Articles | Volume 18, issue 1
https://doi.org/10.5194/nhess-18-31-2018
https://doi.org/10.5194/nhess-18-31-2018
Invited perspectives
 | Highlight paper
 | 
04 Jan 2018
Invited perspectives | Highlight paper |  | 04 Jan 2018

Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: proposing hydro-meteorological thresholds

Thom Bogaard and Roberto Greco

Related authors

Machine-learning-based nowcasting of the Vögelsberg deep-seated landslide: why predicting slow deformation is not so easy
Adriaan L. van Natijne, Thom A. Bogaard, Thomas Zieher, Jan Pfeiffer, and Roderik C. Lindenbergh
Nat. Hazards Earth Syst. Sci., 23, 3723–3745, https://doi.org/10.5194/nhess-23-3723-2023,https://doi.org/10.5194/nhess-23-3723-2023, 2023
Short summary
Effects of dynamic changes of desiccation cracks on preferential flow: experimental investigation and numerical modeling
Yi Luo, Jiaming Zhang, Zhi Zhou, Juan P. Aguilar-Lopez, Roberto Greco, and Thom Bogaard
Hydrol. Earth Syst. Sci., 27, 783–808, https://doi.org/10.5194/hess-27-783-2023,https://doi.org/10.5194/hess-27-783-2023, 2023
Short summary
Potential of satellite-derived hydro-meteorological information for landslide initiation thresholds in Rwanda
Judith Uwihirwe, Alessia Riveros, Hellen Wanjala, Jaap Schellekens, Frederiek Sperna Weiland, Markus Hrachowitz, and Thom A. Bogaard
Nat. Hazards Earth Syst. Sci., 22, 3641–3661, https://doi.org/10.5194/nhess-22-3641-2022,https://doi.org/10.5194/nhess-22-3641-2022, 2022
Short summary
Spatial assessment of probable recharge areas – investigating the hydrogeological controls of an active deep-seated gravitational slope deformation
Jan Pfeiffer, Thomas Zieher, Jan Schmieder, Thom Bogaard, Martin Rutzinger, and Christoph Spötl
Nat. Hazards Earth Syst. Sci., 22, 2219–2237, https://doi.org/10.5194/nhess-22-2219-2022,https://doi.org/10.5194/nhess-22-2219-2022, 2022
Short summary
Integration of observed and model-derived groundwater levels in landslide threshold models in Rwanda
Judith Uwihirwe, Markus Hrachowitz, and Thom Bogaard
Nat. Hazards Earth Syst. Sci., 22, 1723–1742, https://doi.org/10.5194/nhess-22-1723-2022,https://doi.org/10.5194/nhess-22-1723-2022, 2022
Short summary

Related subject area

Landslides and Debris Flows Hazards
A new analytical method for stability analysis of rock blocks with basal erosion in sub-horizontal strata by considering the eccentricity effect
Xushan Shi, Bo Chai, Juan Du, Wei Wang, and Bo Liu
Nat. Hazards Earth Syst. Sci., 23, 3425–3443, https://doi.org/10.5194/nhess-23-3425-2023,https://doi.org/10.5194/nhess-23-3425-2023, 2023
Short summary
Rockfall monitoring with a Doppler radar on an active rockslide complex in Brienz/Brinzauls (Switzerland)
Marius Schneider, Nicolas Oestreicher, Thomas Ehrat, and Simon Loew
Nat. Hazards Earth Syst. Sci., 23, 3337–3354, https://doi.org/10.5194/nhess-23-3337-2023,https://doi.org/10.5194/nhess-23-3337-2023, 2023
Short summary
Landslide initiation thresholds in data-sparse regions: application to landslide early warning criteria in Sitka, Alaska, USA
Annette I. Patton, Lisa V. Luna, Joshua J. Roering, Aaron Jacobs, Oliver Korup, and Benjamin B. Mirus
Nat. Hazards Earth Syst. Sci., 23, 3261–3284, https://doi.org/10.5194/nhess-23-3261-2023,https://doi.org/10.5194/nhess-23-3261-2023, 2023
Short summary
Lessons learnt from a rockfall time series analysis: data collection, statistical analysis, and applications
Sandra Melzner, Marco Conedera, Johannes Hübl, and Mauro Rossi
Nat. Hazards Earth Syst. Sci., 23, 3079–3093, https://doi.org/10.5194/nhess-23-3079-2023,https://doi.org/10.5194/nhess-23-3079-2023, 2023
Short summary
The concept of event-size-dependent exhaustion and its application to paraglacial rockslides
Stefan Hergarten
Nat. Hazards Earth Syst. Sci., 23, 3051–3063, https://doi.org/10.5194/nhess-23-3051-2023,https://doi.org/10.5194/nhess-23-3051-2023, 2023
Short summary

Cited articles

Anagnostopoulos, G. G., Fatichi, S., and Burlando, P.: An advanced process-based distributed model for the investigation of rainfall-induced landslides: The effect of process representation and boundary conditions, Water Resour. Res., 51, 7501–7523, https://doi.org/10.1002/2015WR016909, 2015. 
Anderson, M. G. and Lloyd, D. M.: Using a combined hydrology stability model to develop cut slope design charts, P. I. Civil. Eng., 91, 705–718, https://doi.org/10.1680/iicep.1991.17486, 1991. 
Aristizábal, E., Ignacio Vélez, J., Martínez, H. E., and Jaboyedoff, M.: SHIA_Landslide: a distributed conceptual and physically based model to forecast the temporal and spatial occurrence of shallow landslides triggered by rainfall in tropical and mountainous basins, Landslides, 13, 497–517, https://doi.org/10.1007/s10346-015-0580-7, 2016. 
Arnone, E., Noto, L. V., Lepore, C., and Bras, R. L.: Physically-based and distributed approach to analyze rainfall-triggered landslides at watershed scale, Geomorphology, 133, 121–131, 2011. 
Baum, R. L. and Godt, J. W.: Early warning of rainfall-induced shallow landslides and debris flows in the USA, Landslides, 7, 259–272, https://doi.org/10.1007/s10346-009-0177-0, 2010. 
Short summary
The vast majority of shallow landslides and debris flows are precipitation initiated and predicted using historical landslides plotted versus observed precipitation information. However, this approach has severe limitations. This is partly due to the fact that it is not precipitation that initiates a landslide or debris flow but rather the hydrological dynamics in the soil and slope. We propose to include hydrological information in the regional hydro-meteorological hazard assessment.
Altmetrics
Final-revised paper
Preprint