Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
NHESS | Articles | Volume 18, issue 12
Nat. Hazards Earth Syst. Sci., 18, 3343-3353, 2018
https://doi.org/10.5194/nhess-18-3343-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Nat. Hazards Earth Syst. Sci., 18, 3343-3353, 2018
https://doi.org/10.5194/nhess-18-3343-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 19 Dec 2018

Research article | 19 Dec 2018

Forecasting landslide mobility using an SPH model and ring shear strength tests: a case study

Miao Yu et al.
Related subject area  
Landslides and Debris Flows Hazards
Roads and landslides in Nepal: how development affects environmental risk
Brian G. McAdoo, Michelle Quak, Kaushal R. Gnyawali, Basanta R. Adhikari, Sanjaya Devkota, Purna Lal Rajbhandari, and Karen Sudmeier-Rieux
Nat. Hazards Earth Syst. Sci., 18, 3203-3210, https://doi.org/10.5194/nhess-18-3203-2018,https://doi.org/10.5194/nhess-18-3203-2018, 2018
Short summary
Effects of the impact angle on the coefficient of restitution in rockfall analysis based on a medium-scale laboratory test
Yanhai Wang, Wei Jiang, Shengguo Cheng, Pengcheng Song, and Cong Mao
Nat. Hazards Earth Syst. Sci., 18, 3045-3061, https://doi.org/10.5194/nhess-18-3045-2018,https://doi.org/10.5194/nhess-18-3045-2018, 2018
Short summary
Brief communication: Meteorological and climatological conditions associated with the 9 January 2018 post-fire debris flows in Montecito and Carpinteria, California, USA
Nina S. Oakley, Forest Cannon, Robert Munroe, Jeremy T. Lancaster, David Gomberg, and F. Martin Ralph
Nat. Hazards Earth Syst. Sci., 18, 3037-3043, https://doi.org/10.5194/nhess-18-3037-2018,https://doi.org/10.5194/nhess-18-3037-2018, 2018
Short summary
Temporal evolution of flow-like landslide hazard for a road infrastructure in the municipality of Nocera Inferiore (southern Italy) under the effect of climate change
Marco Uzielli, Guido Rianna, Fabio Ciervo, Paola Mercogliano, and Unni K. Eidsvig
Nat. Hazards Earth Syst. Sci., 18, 3019-3035, https://doi.org/10.5194/nhess-18-3019-2018,https://doi.org/10.5194/nhess-18-3019-2018, 2018
Short summary
The role of synoptic processes in mudflow formation in the piedmont areas of Uzbekistan
Gavkhar Mamadjanova, Simon Wild, Michael A. Walz, and Gregor C. Leckebusch
Nat. Hazards Earth Syst. Sci., 18, 2893-2919, https://doi.org/10.5194/nhess-18-2893-2018,https://doi.org/10.5194/nhess-18-2893-2018, 2018
Short summary
Cited articles  
ASTM Standard D7608-10: Standard test method for torsional ring shear test to determine drained fully softened shear strength and nonlinear strength envelope of cohesive soils (using normally consolidated specimen) for slopes with no preexisting shear surfaces, ASTM International, West Conshohocken, PA, 2010. 
Bui, H. H., Fukagawa, R., Sako, K., and Ohno, S.: Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model, Int. J. Numer. Anal. Met., 32, 1537–1570, 2008. 
Casagli, N., Dapporto, S., Ibsen, M. L., Tofani, V., and Vannocci, P.: Analysis of the landslide triggering mechanism during the storm of 20th–21st November 2000, in Northern Tuscany, Landslides, 3, 13–21, 2006. 
Cascini, L., Cuomo, S., Pastor, M., Sorbino, G., and Piciullo, L.: SPH run-out modelling of channelised landslides of the flow type, Geomorphology, 214, 502–513, 2014. 
Cuomo, S., Pastor, M., Capobianco, V., and Cascini, L.: Modelling the space–time evolution of bed entrainment for flow-like landslides, Eng. Geol., 212, 10–20, 2016. 
Publications Copernicus
Download
Short summary
Flow-like landslides, such as flow slides and debris avalanches, have caused serious infrastructure damage and casualties for centuries. Effective numerical simulation incorporating accurate soil mechanical parameters is essential for predicting post-failure landslide mobility. In this study, smoothed particle hydrodynamics (SPH) incorporating soil ring shear test results were used to forecast the long-runout mobility for a landslide on an unstable slope in China.
Flow-like landslides, such as flow slides and debris avalanches, have caused serious...
Citation
Share