Articles | Volume 18, issue 12
https://doi.org/10.5194/nhess-18-3355-2018
https://doi.org/10.5194/nhess-18-3355-2018
Research article
 | 
19 Dec 2018
Research article |  | 19 Dec 2018

Weight analysis of influencing factors of dam break risk consequences

Zongkun Li, Wei Li, and Wei Ge

Related authors

Spatial Distribution of Vulnerability to Extreme Flood: in provincial scale of China
Wei Li, Jianni Yi, Jie Liu, Wei Ge, Hexiang Zhang, and Yutie Jiao
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-136,https://doi.org/10.5194/nhess-2022-136, 2022
Manuscript not accepted for further review
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Identifying the drivers of private flood precautionary measures in Ho Chi Minh City, Vietnam
Thulasi Vishwanath Harish, Nivedita Sairam, Liang Emlyn Yang, Matthias Garschagen, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 23, 1125–1138, https://doi.org/10.5194/nhess-23-1125-2023,https://doi.org/10.5194/nhess-23-1125-2023, 2023
Short summary
Performance of the flood warning system in Germany in July 2021 – insights from affected residents
Annegret H. Thieken, Philip Bubeck, Anna Heidenreich, Jennifer von Keyserlingk, Lisa Dillenardt, and Antje Otto
Nat. Hazards Earth Syst. Sci., 23, 973–990, https://doi.org/10.5194/nhess-23-973-2023,https://doi.org/10.5194/nhess-23-973-2023, 2023
Short summary
Differences in volcanic risk perception among Goma's population before the Nyiragongo eruption of May 2021, Virunga volcanic province (DR Congo)
Blaise Mafuko Nyandwi, Matthieu Kervyn, François Muhashy Habiyaremye, François Kervyn, and Caroline Michellier
Nat. Hazards Earth Syst. Sci., 23, 933–953, https://doi.org/10.5194/nhess-23-933-2023,https://doi.org/10.5194/nhess-23-933-2023, 2023
Short summary
Empirical tsunami fragility modelling for hierarchical damage levels
Fatemeh Jalayer, Hossein Ebrahimian, Konstantinos Trevlopoulos, and Brendon Bradley
Nat. Hazards Earth Syst. Sci., 23, 909–931, https://doi.org/10.5194/nhess-23-909-2023,https://doi.org/10.5194/nhess-23-909-2023, 2023
Short summary
Quantifying the potential benefits of risk-mitigation strategies on future flood losses in Kathmandu Valley, Nepal
Carlos Mesta, Gemma Cremen, and Carmine Galasso
Nat. Hazards Earth Syst. Sci., 23, 711–731, https://doi.org/10.5194/nhess-23-711-2023,https://doi.org/10.5194/nhess-23-711-2023, 2023
Short summary

Cited articles

Colomer Mendoza, F. J. and Gallardo, I. A.: Design of a model to assess the environmental risk of leachate dams, Waste Manage., 28, 2122–2133, 2008. 
Daniell, J. E., Khazai, B., and Wenzel, F.: Chapter 6 – Indirect Loss Potential Index for Natural Disasters for National and Subnational Analysis, Risk Modeling for Hazards & Disasters, 139–173, https://doi.org/10.1016/C2015-0-01065-6, 2018. 
Dong, Q., Ai, X., Cao, G., Zhang, Y., and Wang, X.: Study on risk assessment of water security of drought periods based on entropy weight methods, Kybernetes, 39, 864–870, 2010. 
Dutta, D., Herath, S., and Musiake, K.: A mathematical model for flood loss estimation, J. Hydrol., 277, 24–49, 2003. 
Ge, W., Li, Z., Liang, R. Y., Li, W., and Cai, Y.: Methodology for establishing risk criteria for dams in developing countries, case study of china, Water Resour. Manage., 31, 4063–4074, 2017. 
Download
Short summary
It is necessary to analyze the weight of multiple factors in the risk consequence of dam break. When the number of influencing factors exceeds 10, the analysis of its weight will become very difficult. In this paper, the cloud model, an artificial intelligence calculation method, is used to transform the subjective factors into a large number of data for the improved entropy weight method. The result is objective and reasonable, providing a new way of analyzing multi-factor weights.
Altmetrics
Final-revised paper
Preprint