Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 18, issue 1 | Copyright
Nat. Hazards Earth Syst. Sci., 18, 91-104, 2018
https://doi.org/10.5194/nhess-18-91-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Jan 2018

Research article | 05 Jan 2018

Towards a monitoring system of temperature extremes in Europe

Christophe Lavaysse1, Carmelo Cammalleri1, Alessandro Dosio1, Gerard van der Schrier2, Andrea Toreti1, and Jürgen Vogt1 Christophe Lavaysse et al.
  • 1European Commission, Joint Research Centre (JRC), Ispra, Italy
  • 2Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands

Abstract. Extreme-temperature anomalies such as heat and cold waves may have strong impacts on human activities and health. The heat waves in western Europe in 2003 and in Russia in 2010, or the cold wave in southeastern Europe in 2012, generated a considerable amount of economic loss and resulted in the death of several thousands of people. Providing an operational system to monitor extreme-temperature anomalies in Europe is thus of prime importance to help decision makers and emergency services to be responsive to an unfolding extreme event.

In this study, the development and the validation of a monitoring system of extreme-temperature anomalies are presented. The first part of the study describes the methodology based on the persistence of events exceeding a percentile threshold. The method is applied to three different observational datasets, in order to assess the robustness and highlight uncertainties in the observations. The climatology of extreme events from the last 21 years is then analysed to highlight the spatial and temporal variability of the hazard, and discrepancies amongst the observational datasets are discussed. In the last part of the study, the products derived from this study are presented and discussed with respect to previous studies. The results highlight the accuracy of the developed index and the statistical robustness of the distribution used to calculate the return periods.

Download & links
Publications Copernicus
Download
Short summary
Extreme-temperature anomalies such as heat and cold waves may have strong impacts on human activities and health. Providing a robust operational system to monitor extreme-temperature anomalies in Europe, developed and validated in this study, is thus of prime importance. This work exposes the methodology and the climatology of these events. It also discusses the associated uncertainties according to the datasets and the methods used.
Extreme-temperature anomalies such as heat and cold waves may have strong impacts on human...
Citation
Share