Alfieri, L., Laio, F., and Claps, P.: A simulation experiment for optimal
design hyetograph selection, Hydrol. Process., 22, 813–820,
https://doi.org/10.1002/hyp.6646, 2008. a

Andersen, J., Sælthun, N., Hjukse, T., and Roald, L.: Hydrologisk modell
for flomberegning (Hydrological for flood estimation), Tech. rep., NVE,
Oslo, 1983. a, b, c

Ball, J. E.: Australian Rainfall and Runoff: A Guide to Flood Estimation –
Draft for Industry Comment 151205, Geoscience Australia, 2015. a

Beven, K. and Hall, J.: Applied Uncertainty Analysis for Flood Risk
Management, edited by: Beven, K. and Hall, J., 684 pp., https://doi.org/10.1142/p588,
2014. a

Blanchet, J., Touati, J., Lawrence, D., Garavaglia, F., and Paquet, E.:
Evaluation of a compound distribution based on weather pattern subsampling
for extreme rainfall in Norway, Nat. Hazards Earth Syst. Sci., 15,
2653–2667, https://doi.org/10.5194/nhess-15-2653-2015, 2015. a

Brigode, P., Bernardara, P., Paquet, E., Gailhard, J., Garavaglia, F., Merz,
R., Micovic, Z., Lawrence, D., and Ribstein, P.: Sensitivity analysis of
SCHADEX extreme flood estimations to observed hydrometeorological
variability, Water Resour. Res., 50, 353–370,
https://doi.org/10.1002/2013WR013687, 2014. a, b

Brocca, L., Ciabatta, L., Massari, C., Camici, S., and Tarpanelli, A.: Soil
moisture for hydrological applications: Open questions and new
opportunities, Water, 9, 140, https://doi.org/10.3390/w9020140, 2017. a

Calver, A. and Lamb, R.: Flood frequency estimation using continuous
rainfall-runoff modelling, Phys. Chem. Earth, 20, 479–483,
https://doi.org/10.1016/S0079-1946(96)00010-9, 1995. a

Camici, S., Tarpanelli, A., Brocca, L., Melone, F., and Moramarco, T.: Design
soil moisture estimation by comparing continuous and storm-based
rainfall-runoff modeling, Water Resour. Res., 47, W05527,
https://doi.org/10.1029/2010WR009298, 2011. a

Chow, V. T., Maidment, D. R., and Mays, L. W.: Applied Hydrology, 2nd ed., McGraw-Hill International Editions, 1988. a

Coles, S.: An Introduction to Statistical Modeling of Extreme Values, 1st ed., Springer-Verlag, London, 2001. a

Filipova, V., Lawrence, D., and Klempe, H.: Regionalisation of the parameters
of the rainfall–runoff model PQRUT, Hydrol. Res., 47, 748–766, 2016. a, b

Fleig, A. K., Andreassen, L. M., Barfod, E., Haga, J., Haugen, L. E., Hisdal,
H., Melvold, K., and Saloranta, T.: Norwegian Hydrological Reference Dataset
for Climate Change Studies, Tech. rep., Oslo,
available at:
http://publikasjoner.nve.no/rapport/2013/rapport2013_02.pdf (last
access: 21 December 2018), 2013. a

Førland, E.: Manuel for beregning av påregnelige ekstreme
nedbørverdier (Manuel for estimating probable extreme precipitation
values), Tech. rep., DNMI, Oslo, 1992. a

Garavaglia, F., Gailhard, J., Paquet, E., Lang, M., Garçon, R., and
Bernardara, P.: Introducing a rainfall compound distribution model based on
weather patterns sub-sampling, Hydrol. Earth Syst. Sci., 14, 951–964,
https://doi.org/10.5194/hess-14-951-2010, 2010. a, b

Gräler, B., van den Berg, M. J., Vandenberghe, S., Petroselli, A.,
Grimaldi, S., De Baets, B., and Verhoest, N. E. C.: Multivariate return
periods in hydrology: a critical and practical review focusing on synthetic
design hydrograph estimation, Hydrol. Earth Syst. Sci., 17, 1281–1296,
https://doi.org/10.5194/hess-17-1281-2013, 2013. a

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009. a

Haberlandt, U. and Radtke, I.: Hydrological model calibration for derived
flood frequency analysis using stochastic rainfall and probability
distributions of peak flows, Hydrol. Earth Syst. Sci., 18, 353–365,
https://doi.org/10.5194/hess-18-353-2014, 2014. a

Hao, Z. and Singh, V. P.: Review of dependence modeling in hydrology and water
resources, Prog. Phys. Geogr., 40, 549–578,
https://doi.org/10.1177/0309133316632460,
2016. a

Katz, R. W., Parlange, M. B., and Naveau, P.: Statistics of extremes in
hydrology, Adv. Water Resour., 25, 1287–1304,
https://doi.org/10.1016/S0309-1708(02)00056-8, 2002. a

Kim, D., Cho, H., Onof, C., and Choi, M.: Let-It-Rain: a web application for
stochastic point rainfall generation at ungaged basins and its applicability
in runoff and flood modeling, Stoch. Env. Res. Risk
A., 31, 1023–1043, https://doi.org/10.1007/s00477-016-1234-6, 2017. a

Kjeldsen, T. R.: The revitalised FSR/FEH rainfall-runoff method, Center of
Ecology & Hydrology, 1–64,
available at:
http://nora.nerc.ac.uk/id/eprint/2637/1/KjeldsenFEHSR1finalreport.pdf
(last access: 21 December 2018),
2007. a

Kobierska, F., Engeland, K., and Thorarinsdottir, T.: Evaluation of design
flood estimates – a case study for Norway, Hydrol. Res., 49, 450–465,
https://doi.org/10.2166/nh.2017.068, 2017. a, b

Lawrence, D., Paquet, E., Gailhard, J., and Fleig, A. K.: Stochastic
semi-continuous simulation for extreme flood estimation in catchments with
combined rainfall–snowmelt flood regimes, Nat. Hazards Earth Syst. Sci., 14,
1283–1298, https://doi.org/10.5194/nhess-14-1283-2014, 2014. a

Li, J., Thyer, M., Lambert, M., Kuczera, G., and Metcalfe, A.: An efficient
causative event-based approach for deriving the annual flood frequency
distribution, J. Hydrol., 510, 412–423,
https://doi.org/10.1016/j.jhydrol.2013.12.035, 2014. a

Loukas, A.: Flood frequency estimation by a derived distribution procedure,
J. Hydrol., 255, 69–89, https://doi.org/10.1016/S0022-1694(01)00505-4, 2002. a, b

Meynink, W. J. and Cordery, I.: Critical duration of rainfall for flood
estimation, Water Resour. Res., 12, 1209–1214,
https://doi.org/10.1029/WR012i006p01209, 1976. a

Midttømme, G. and Pettersson, L.: Retningslinjer for flomberegninger 2011,
Tech. Rep. 4/2011, NVE, Oslo,
available at:
http://publikasjoner.nve.no/retningslinjer/2011/retningslinjer2011_04.pdf
(last access: 21 December 2018), 2011. a, b

Mohr, M.: New Routines for Gridding of Temperature and Precipitation
Observations for “seNorge. no”, Met. no Report, Oslo, 8, 2008,
https://doi.org/10.1073/pnas.93.13.6830, 2008. a

Muzik, I.: Derived, physically based distribution of flood probabilities,
Proceedings of the Yokohama Symposium, IAHS , Wallingford, 183–188, 1993. a

Nathan, R. J. and Bowles, D.: A Probability-Neutral Approach to the Estimation
of Design Snowmelt Floods A Probability-Neutral Approach to the Estimation of
Design Snowmelt Floods, Hydrology and Water Resources Symposium:Wai-Whenua,
125–130, 1997. a

NVE: NEVINA (Nedbørfelt-Vannføring-INdeks-Analyse)
Lavvannsverktøy, available at: http://nevina.nve.no/ (last access:
21 December 2018), 2015. a

Nyeko-Ogiramoi, P., Willems, P., Mutua, F. M., and Moges, S. A.: An elusive
search for regional flood frequency estimates in the River Nile basin,
Hydrol. Earth Syst. Sci., 16, 3149–3163,
https://doi.org/10.5194/hess-16-3149-2012, 2012. a

Onof, C., Chandler, R. E., Kakou, A., Northrop, P., Wheater, H. S., and Isham,
V.: Rainfall modelling using Poisson-cluster processes: a review of
developments, Stoch. Env. Res. Risk A., 14,
384–411, https://doi.org/10.1007/s004770000043,
2000. a

Paquet, E., Garavaglia, F., Garçon, R., and Gailhard, J.: The SCHADEX
method: A semi-continuous rainfall-runoff simulation for extreme flood
estimation, J. Hydrol., 495, 23–37,
https://doi.org/10.1016/j.jhydrol.2013.04.045, 2013. a, b

Parkes, B. and Demeritt, D.: Defining the hundred year flood: A Bayesian
approach for using historic data to reduce uncertainty in flood frequency
estimates, J. Hydrol., 540, 1189–1208,
https://doi.org/10.1016/j.jhydrol.2016.07.025, 2016.
a

Rahman, A., Weinmann, P. E., Hoang, T. M. T., and Laurenson, E. M.: Monte
Carlo simulation of flood frequency curves from rainfall, J.
Hydrol., 256, 196–210, https://doi.org/10.1016/S0022-1694(01)00533-9, 2002. a

Ren, M., He, X., Kan, G., Wang, F., Zhang, H., Li, H., Cao, D., Wang, H., Sun,
D., Jiang, X., Wang, G., and Zhang, Z.: A comparison of flood control
standards for reservoir engineering for different countries, Water, 9, 152, https://doi.org/10.3390/w9030152, 2017. a

Salazar, S., Salinas, J. L., García-bartual, R., and Francés, F.:
A flood frequency analysis framework to account flood-generating 60
factors in Western Mediterranean catchments, presented at 2017 STAHY, Warsaw, Poland, 21–22 September 2017. a

Salinas, J. L., Laaha, G., Rogger, M., Parajka, J., Viglione, A., Sivapalan,
M., and Blöschl, G.: Comparative assessment of predictions in ungauged
basins – Part 2: Flood and low flow studies, Hydrol. Earth Syst. Sci., 17,
2637–2652, https://doi.org/10.5194/hess-17-2637-2013, 2013. a

Schaefer, M. and Barker, B.: Stochastic Event Flood Model (SEFM), in:
Mathematical models of small watershed hydrology and applications, edited
by: Singh, V. P. and Frevert, D., chap. 20, 950, Water Resources Publications,
Colorado, USA, 2002. a, b

Skaugen, T.: Studie av Skilltemperatur for snøved hjelp samlokalisert
snøpute, nedbør og temperaturdata, Tech. rep., NVE, Oslo, 1998. a

Skaugen, T. and Onof, C.: A rainfall-runoff model parameterized from GIS and
runoff data, Hydrol. Process., 28, 4529–4542, https://doi.org/10.1002/hyp.9968,
2014. a, b, c

Soetaert, K. and Petzoldt, T.: Inverse Modelling, Sensitivity and Monte Carlo
Analysis in R Using
Package FME, J. Stat. Softw., 33, 1–28, https://doi.org/10.18637/jss.v033.i03,
2010. a

Svensson, C., Kjeldsen, T. R., and Jones, D. A.: Flood frequency estimation
using a joint probability approach within a Monte Carlo framework,
Hydrolog. Sci. J., 58, 8–27, https://doi.org/10.1080/02626667.2012.746780,
2013. a, b

Tolson, B. A. and Shoemaker, C. A.: Dynamically dimensioned search algorithm
for computationally efficient watershed model calibration, Water Resour.
Res., 43, W01413, https://doi.org/10.1029/2005WR004723, 2007. a

Vormoor, K. and Skaugen, T.: Temporal Disaggregation of Daily Temperature and
Precipitation Grid Data for Norway, J. Hydrometeorol., 14,
989–999, https://doi.org/10.1175/JHM-D-12-0139.1,
2013. a, b, c

Wilson, D., Fleig, A. K., Lawrence, D., Hisdal, H., Petterson, L. E., and
Holmqvist, E.: A review of NVE's flood frequency estimation procedures, NVE
Report, p. 52, 2011. a, b