Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.883 IF 2.883
  • IF 5-year value: 3.321 IF 5-year
    3.321
  • CiteScore value: 3.07 CiteScore
    3.07
  • SNIP value: 1.336 SNIP 1.336
  • IPP value: 2.80 IPP 2.80
  • SJR value: 1.024 SJR 1.024
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 81 Scimago H
    index 81
  • h5-index value: 43 h5-index 43
NHESS | Articles | Volume 19, issue 7
Nat. Hazards Earth Syst. Sci., 19, 1415–1431, 2019
https://doi.org/10.5194/nhess-19-1415-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Nat. Hazards Earth Syst. Sci., 19, 1415–1431, 2019
https://doi.org/10.5194/nhess-19-1415-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 16 Jul 2019

Research article | 16 Jul 2019

What's streamflow got to do with it? A probabilistic simulation of the competing oceanographic and fluvial processes driving extreme along-river water levels

Katherine A. Serafin et al.
Viewed  
Total article views: 936 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
711 214 11 936 19 18 11
  • HTML: 711
  • PDF: 214
  • XML: 11
  • Total: 936
  • Supplement: 19
  • BibTeX: 18
  • EndNote: 11
Views and downloads (calculated since 09 Jan 2019)
Cumulative views and downloads (calculated since 09 Jan 2019)
Viewed (geographical distribution)  
Total article views: 597 (including HTML, PDF, and XML) Thereof 594 with geography defined and 3 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 20 Nov 2019
Publications Copernicus
Download
Short summary
In coastal environments, extreme water levels driving flooding are often generated by many individual processes like storm surge, streamflow, and tides. To estimate flood drivers along a coastal river, we merge statistical simulations of ocean and river forcing with a hydraulic model to produce water levels. We find both ocean and river forcing are necessary for producing extreme flood levels like the 100-yr event, highlighting the need for considering compound events in flood risk assessments.
In coastal environments, extreme water levels driving flooding are often generated by many...
Citation