Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.883 IF 2.883
  • IF 5-year value: 3.321 IF 5-year
    3.321
  • CiteScore value: 3.07 CiteScore
    3.07
  • SNIP value: 1.336 SNIP 1.336
  • IPP value: 2.80 IPP 2.80
  • SJR value: 1.024 SJR 1.024
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 81 Scimago H
    index 81
  • h5-index value: 43 h5-index 43
NHESS | Articles | Volume 19, issue 7
Nat. Hazards Earth Syst. Sci., 19, 1433–1444, 2019
https://doi.org/10.5194/nhess-19-1433-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Nat. Hazards Earth Syst. Sci., 19, 1433–1444, 2019
https://doi.org/10.5194/nhess-19-1433-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 17 Jul 2019

Research article | 17 Jul 2019

Global detection of rainfall-triggered landslide clusters

Susanne A. Benz and Philipp Blum
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (29 May 2019) by Mario Parise
AR by Susanne Benz on behalf of the Authors (30 May 2019)  Author's response    Manuscript
ED: Publish as is (09 Jun 2019) by Mario Parise
Publications Copernicus
Download
Short summary
This study aims to identify clusters of landslide events within a global database that are triggered by the same rainfall event. Results show that 14 % of all recorded landslide events are actually part of a landslide cluster consisting of at least 10 events. However, in a more regional analysis this number ranges from 30 % for the west coast of North America to 3 % in the Himalayan region. These findings provide an improved understanding for managing landslide mitigations on a larger scale.
This study aims to identify clusters of landslide events within a global database that are...
Citation