Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.883 IF 2.883
  • IF 5-year value: 3.321 IF 5-year
    3.321
  • CiteScore value: 3.07 CiteScore
    3.07
  • SNIP value: 1.336 SNIP 1.336
  • IPP value: 2.80 IPP 2.80
  • SJR value: 1.024 SJR 1.024
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 81 Scimago H
    index 81
  • h5-index value: 43 h5-index 43
NHESS | Articles | Volume 19, issue 7
Nat. Hazards Earth Syst. Sci., 19, 1433–1444, 2019
https://doi.org/10.5194/nhess-19-1433-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Nat. Hazards Earth Syst. Sci., 19, 1433–1444, 2019
https://doi.org/10.5194/nhess-19-1433-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 17 Jul 2019

Research article | 17 Jul 2019

Global detection of rainfall-triggered landslide clusters

Susanne A. Benz and Philipp Blum
Viewed  
Total article views: 800 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
568 218 14 800 55 15 10
  • HTML: 568
  • PDF: 218
  • XML: 14
  • Total: 800
  • Supplement: 55
  • BibTeX: 15
  • EndNote: 10
Views and downloads (calculated since 25 Jan 2019)
Cumulative views and downloads (calculated since 25 Jan 2019)
Viewed (geographical distribution)  
Total article views: 478 (including HTML, PDF, and XML) Thereof 472 with geography defined and 6 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 14 Nov 2019
Publications Copernicus
Download
Short summary
This study aims to identify clusters of landslide events within a global database that are triggered by the same rainfall event. Results show that 14 % of all recorded landslide events are actually part of a landslide cluster consisting of at least 10 events. However, in a more regional analysis this number ranges from 30 % for the west coast of North America to 3 % in the Himalayan region. These findings provide an improved understanding for managing landslide mitigations on a larger scale.
This study aims to identify clusters of landslide events within a global database that are...
Citation