Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.883 IF 2.883
  • IF 5-year value: 3.321 IF 5-year
    3.321
  • CiteScore value: 3.07 CiteScore
    3.07
  • SNIP value: 1.336 SNIP 1.336
  • IPP value: 2.80 IPP 2.80
  • SJR value: 1.024 SJR 1.024
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 81 Scimago H
    index 81
  • h5-index value: 43 h5-index 43
NHESS | Articles | Volume 19, issue 7
Nat. Hazards Earth Syst. Sci., 19, 1445–1457, 2019
https://doi.org/10.5194/nhess-19-1445-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Nat. Hazards Earth Syst. Sci., 19, 1445–1457, 2019
https://doi.org/10.5194/nhess-19-1445-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Jul 2019

Research article | 18 Jul 2019

Reducing uncertainties in flood inundation outputs of a two-dimensional hydrodynamic model by constraining roughness

Punit Kumar Bhola et al.
Related authors  
Hazard maps with differentiated exceedance probability for flood impact assessment
Punit Kumar Bhola, Jorge Leandro, and Markus Disse
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-158,https://doi.org/10.5194/nhess-2019-158, 2019
Manuscript under review for NHESS
Short summary
Related subject area  
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
“We can help ourselves”: does community resilience buffer against the negative impact of flooding on mental health?
Torsten Masson, Sebastian Bamberg, Michael Stricker, and Anna Heidenreich
Nat. Hazards Earth Syst. Sci., 19, 2371–2384, https://doi.org/10.5194/nhess-19-2371-2019,https://doi.org/10.5194/nhess-19-2371-2019, 2019
Short summary
Spatial indicators for desertification in southeast Vietnam
Le Thi Thu Hien, Anne Gobin, and Pham Thi Thanh Huong
Nat. Hazards Earth Syst. Sci., 19, 2325–2337, https://doi.org/10.5194/nhess-19-2325-2019,https://doi.org/10.5194/nhess-19-2325-2019, 2019
Short summary
Anomalies of dwellers' collective geotagged behaviors in response to rainstorms: a case study of eight cities in China using smartphone location data
Jiawei Yi, Yunyan Du, Fuyuan Liang, Tao Pei, Ting Ma, and Chenghu Zhou
Nat. Hazards Earth Syst. Sci., 19, 2169–2182, https://doi.org/10.5194/nhess-19-2169-2019,https://doi.org/10.5194/nhess-19-2169-2019, 2019
Short summary
Quantification of climate change impact on dam failure risk under hydrological scenarios: a case study from a Spanish dam
Javier Fluixá-Sanmartín, Adrián Morales-Torres, Ignacio Escuder-Bueno, and Javier Paredes-Arquiola
Nat. Hazards Earth Syst. Sci., 19, 2117–2139, https://doi.org/10.5194/nhess-19-2117-2019,https://doi.org/10.5194/nhess-19-2117-2019, 2019
Short summary
California earthquake insurance unpopularity: the issue is the price, not the risk perception
Adrien Pothon, Philippe Gueguen, Sylvain Buisine, and Pierre-Yves Bard
Nat. Hazards Earth Syst. Sci., 19, 1909–1924, https://doi.org/10.5194/nhess-19-1909-2019,https://doi.org/10.5194/nhess-19-1909-2019, 2019
Short summary
Cited articles  
Arcement, G. J. and Schneider, V. R.: Guide for selecting manning's roughness coefficients for natural channels and flood plains, Water-Supply paper 2339, United States Department of Transportation, Denver, USA, 38 pp., 1989. 
Aronica, G., Hankin, B., and Beven, K.: Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data, Adv. Water Resour., 22, 349–365, https://doi.org/10.1016/S0309-1708(98)00017-7, 1998. 
Bach, P. M., Rauch, W., Mikkelsen, P. S., McCarthy, D. T., and Deletic, A.: A critical review of integrated urban water modelling – urban drainage and beyond, Environ. Modell. Softw., 54, 88–107, https://doi.org/10.1016/j.envsoft.2013.12.018, 2014. 
Bales, J. D. and Wagner, C. R.: Sources of Uncertainty in flood inundation maps, J. Flood Risk Manag., 2, 139–147, https://doi.org/10.1111/j.1753-318X.2009.01029.x, 2009. 
Bates, P. D., Pappenberger, F., and Romanowicz, R. J.: Uncertainty in flood inundation modelling, in: Applied uncertainty analysis for flood risk management, edited by: Beven, K. and Hall, J., Imperial College Press, London, UK, 232–269, https://doi.org/10.1142/9781848162716_0010, 2014. 
Publications Copernicus
Download
Short summary
This study investigates the use of measured water levels to reduce uncertainty bounds of two-dimensional hydrodynamic model output. Uncertainty assessment is generally not reported in practice due to the lack of best practices and too wide uncertainty bounds. Hence, a novel method to reduce the bounds by constraining the model parameter, mainly roughness, is presented. The operational practitioners as well as researchers benefit from the study in the field of flood risk management.
This study investigates the use of measured water levels to reduce uncertainty bounds of...
Citation