Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.883 IF 2.883
  • IF 5-year value: 3.321 IF 5-year
    3.321
  • CiteScore value: 3.07 CiteScore
    3.07
  • SNIP value: 1.336 SNIP 1.336
  • IPP value: 2.80 IPP 2.80
  • SJR value: 1.024 SJR 1.024
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 81 Scimago H
    index 81
  • h5-index value: 43 h5-index 43
NHESS | Articles | Volume 19, issue 7
Nat. Hazards Earth Syst. Sci., 19, 1445–1457, 2019
https://doi.org/10.5194/nhess-19-1445-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Nat. Hazards Earth Syst. Sci., 19, 1445–1457, 2019
https://doi.org/10.5194/nhess-19-1445-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Jul 2019

Research article | 18 Jul 2019

Reducing uncertainties in flood inundation outputs of a two-dimensional hydrodynamic model by constraining roughness

Punit Kumar Bhola et al.

Related authors

Hazard maps with differentiated exceedance probability for flood impact assessment
Punit Kumar Bhola, Jorge Leandro, and Markus Disse
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-158,https://doi.org/10.5194/nhess-2019-158, 2019
Preprint under review for NHESS
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Modeling of E. coli distribution for hazard assessment of bathing waters affected by combined sewer overflows
Luca Locatelli, Beniamino Russo, Alejandro Acero Oliete, Juan Carlos Sánchez Catalán, Eduardo Martínez-Gomariz, and Montse Martínez
Nat. Hazards Earth Syst. Sci., 20, 1219–1232, https://doi.org/10.5194/nhess-20-1219-2020,https://doi.org/10.5194/nhess-20-1219-2020, 2020
Short summary
Monitoring of the reconstruction process in a high mountainous area affected by a major earthquake and subsequent hazards
Chenxiao Tang, Xinlei Liu, Yinghua Cai, Cees Van Westen, Yu Yang, Hai Tang, Chengzhang Yang, and Chuan Tang
Nat. Hazards Earth Syst. Sci., 20, 1163–1186, https://doi.org/10.5194/nhess-20-1163-2020,https://doi.org/10.5194/nhess-20-1163-2020, 2020
Short summary
Review article: Natural hazard risk assessments at the global scale
Philip J. Ward, Veit Blauhut, Nadia Bloemendaal, James E. Daniell, Marleen C. de Ruiter, Melanie J. Duncan, Robert Emberson, Susanna F. Jenkins, Dalia Kirschbaum, Michael Kunz, Susanna Mohr, Sanne Muis, Graeme A. Riddell, Andreas Schäfer, Thomas Stanley, Ted I. E. Veldkamp, and Hessel C. Winsemius
Nat. Hazards Earth Syst. Sci., 20, 1069–1096, https://doi.org/10.5194/nhess-20-1069-2020,https://doi.org/10.5194/nhess-20-1069-2020, 2020
Short summary
A spatial decision support system for enhancing resilience to floods: bridging resilience modelling and geovisualization techniques
Charlotte Heinzlef, Vincent Becue, and Damien Serre
Nat. Hazards Earth Syst. Sci., 20, 1049–1068, https://doi.org/10.5194/nhess-20-1049-2020,https://doi.org/10.5194/nhess-20-1049-2020, 2020
Short summary
Global-scale benefit–cost analysis of coastal flood adaptation to different flood risk drivers using structural measures
Timothy Tiggeloven, Hans de Moel, Hessel C. Winsemius, Dirk Eilander, Gilles Erkens, Eskedar Gebremedhin, Andres Diaz Loaiza, Samantha Kuzma, Tianyi Luo, Charles Iceland, Arno Bouwman, Jolien van Huijstee, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 1025–1044, https://doi.org/10.5194/nhess-20-1025-2020,https://doi.org/10.5194/nhess-20-1025-2020, 2020
Short summary

Cited articles

Arcement, G. J. and Schneider, V. R.: Guide for selecting manning's roughness coefficients for natural channels and flood plains, Water-Supply paper 2339, United States Department of Transportation, Denver, USA, 38 pp., 1989. 
Aronica, G., Hankin, B., and Beven, K.: Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data, Adv. Water Resour., 22, 349–365, https://doi.org/10.1016/S0309-1708(98)00017-7, 1998. 
Bach, P. M., Rauch, W., Mikkelsen, P. S., McCarthy, D. T., and Deletic, A.: A critical review of integrated urban water modelling – urban drainage and beyond, Environ. Modell. Softw., 54, 88–107, https://doi.org/10.1016/j.envsoft.2013.12.018, 2014. 
Bales, J. D. and Wagner, C. R.: Sources of Uncertainty in flood inundation maps, J. Flood Risk Manag., 2, 139–147, https://doi.org/10.1111/j.1753-318X.2009.01029.x, 2009. 
Bates, P. D., Pappenberger, F., and Romanowicz, R. J.: Uncertainty in flood inundation modelling, in: Applied uncertainty analysis for flood risk management, edited by: Beven, K. and Hall, J., Imperial College Press, London, UK, 232–269, https://doi.org/10.1142/9781848162716_0010, 2014. 
Publications Copernicus
Download
Short summary
This study investigates the use of measured water levels to reduce uncertainty bounds of two-dimensional hydrodynamic model output. Uncertainty assessment is generally not reported in practice due to the lack of best practices and too wide uncertainty bounds. Hence, a novel method to reduce the bounds by constraining the model parameter, mainly roughness, is presented. The operational practitioners as well as researchers benefit from the study in the field of flood risk management.
This study investigates the use of measured water levels to reduce uncertainty bounds of...
Citation