Articles | Volume 19, issue 1
https://doi.org/10.5194/nhess-19-169-2019
https://doi.org/10.5194/nhess-19-169-2019
Research article
 | 
22 Jan 2019
Research article |  | 22 Jan 2019

Using cellular automata to simulate wildfire propagation and to assist in fire management

Joana Gouveia Freire and Carlos Castro DaCamara

Related authors

DRIVERS OF BURNED AREA PATTERNS IN CERRADO: THE CASE OF MATOPIBA REGION
P. S. Silva, J. A. Rodrigues, F. L. M. Santos, A. A. Pereira, J. Nogueira, C. C. DaCamara, and R. Libonati
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W12-2020, 135–140, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-135-2020,https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-135-2020, 2020
Wildland fire potential outlooks for Portugal using meteorological indices of fire danger
Sílvia A. Nunes, Carlos C. DaCamara, Kamil F. Turkman, Teresa J. Calado, Ricardo M. Trigo, and Maria A. A. Turkman
Nat. Hazards Earth Syst. Sci., 19, 1459–1470, https://doi.org/10.5194/nhess-19-1459-2019,https://doi.org/10.5194/nhess-19-1459-2019, 2019
Short summary
Fire danger rating over Mediterranean Europe based on fire radiative power derived from Meteosat
Miguel M. Pinto, Carlos C. DaCamara, Isabel F. Trigo, Ricardo M. Trigo, and K. Feridun Turkman
Nat. Hazards Earth Syst. Sci., 18, 515–529, https://doi.org/10.5194/nhess-18-515-2018,https://doi.org/10.5194/nhess-18-515-2018, 2018
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Brief communication: The Lahaina Fire disaster – how models can be used to understand and predict wildfires
Timothy W. Juliano, Fernando Szasdi-Bardales, Neil P. Lareau, Kasra Shamsaei, Branko Kosović, Negar Elhami-Khorasani, Eric P. James, and Hamed Ebrahimian
Nat. Hazards Earth Syst. Sci., 24, 47–52, https://doi.org/10.5194/nhess-24-47-2024,https://doi.org/10.5194/nhess-24-47-2024, 2024
Short summary
Prediction of natural dry-snow avalanche activity using physics-based snowpack simulations
Stephanie Mayer, Frank Techel, Jürg Schweizer, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 23, 3445–3465, https://doi.org/10.5194/nhess-23-3445-2023,https://doi.org/10.5194/nhess-23-3445-2023, 2023
Short summary
Automated Avalanche Terrain Exposure Scale (ATES) mapping – Local validation and optimization in Western Canada
John Sykes, Håvard Toft, Pascal Haegeli, and Grant Statham
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-112,https://doi.org/10.5194/nhess-2023-112, 2023
Revised manuscript accepted for NHESS
Short summary
Early warning system for ice collapses and river blockages in the Sedongpu Valley, southeastern Tibetan Plateau
Wei Yang, Zhongyan Wang, Baosheng An, Yingying Chen, Chuanxi Zhao, Chenhui Li, Yongjie Wang, Weicai Wang, Jiule Li, Guangjian Wu, Lin Bai, Fan Zhang, and Tandong Yao
Nat. Hazards Earth Syst. Sci., 23, 3015–3029, https://doi.org/10.5194/nhess-23-3015-2023,https://doi.org/10.5194/nhess-23-3015-2023, 2023
Short summary
Fire risk modeling: an integrated and data-driven approach applied to Sicily
Alba Marquez Torres, Giovanni Signorello, Sudeshna Kumar, Greta Adamo, Ferdinando Villa, and Stefano Balbi
Nat. Hazards Earth Syst. Sci., 23, 2937–2959, https://doi.org/10.5194/nhess-23-2937-2023,https://doi.org/10.5194/nhess-23-2937-2023, 2023
Short summary

Cited articles

Alexandridis, A., Vakalis, D., Siettos, C. I., and Bafas, G. V.: A Cellular Automata model for forest fire spread prediction: The case of the wildfire that swept through Spetses Island in 1990, Appl. Math. Comput., 204, 191–201, https://doi.org/10.1016/j.amc.2008.06.046, 2008. a, b, c, d, e
Alexandridis, A., Russo, L., Vakalis, D., Bafas, G. V., and Siettos, C. I.: Wildland fire spread modelling using cellular automata: evolution in large-scale spatially heterogeneous environments under fire suppresion tactics, Int. J. Wildland Fire, 20, 633–647, https://doi.org/10.1071/WF09119, 2011. a, b, c
Amraoui, M., Liberato, M. L. R., Calado, T. J., DaCamara, C. C., Coelho, L. P., Trigo, R. M., and Gouveia, C. M.: Fire activity over Mediterranean Europe based on information from Meteosat-8, Forest Ecol. Manage., 294, 62–75, https://doi.org/10.1016/j.foreco.2012.08.032, 2013. a
Amraoui, M., Pereira, M. G., DaCamara, C. C., and Calado, T. J.: Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region, Sci. Total Environ., 524-525, 32–39, https://doi.org/10.1016/j.scitotenv.2015.04.032, 2015. a
ANPC: Tavira/Cachopo/Catraia ocurrence report 2012080021067, National Authority for Civil Protection, available at: https://www.bombeiros.pt/wp-content/uploads/2012/09/Relatorio-de-ocorrencia-2012080021067-Tavira_Cachopo_Catraia.pdf (last access: 17 January 2018), 2012. a
Download
Short summary
Cellular automata are useful tools to simulate wildfire propagation. We design a cellular automaton to simulate a severe wildfire that took place in Portugal in 2012 and resulted in almost 25 000 ha burned. The explosive stage is adequately modeled when refining the role played by the wind in fire spreading. Results show a probability of ignition out of the limits of the observed scar, information that may help choose where to allocate resources for firefighting.
Altmetrics
Final-revised paper
Preprint