Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year
    2.693
  • CiteScore value: 2.43 CiteScore
    2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 73 Scimago H
    index 73
NHESS | Articles | Volume 19, issue 1
Nat. Hazards Earth Syst. Sci., 19, 169-179, 2019
https://doi.org/10.5194/nhess-19-169-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Spatial and temporal patterns of wildfires: models, theory,...

Nat. Hazards Earth Syst. Sci., 19, 169-179, 2019
https://doi.org/10.5194/nhess-19-169-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 22 Jan 2019

Research article | 22 Jan 2019

Using cellular automata to simulate wildfire propagation and to assist in fire management

Joana Gouveia Freire and Carlos Castro DaCamara
Related authors  
Wildland fire potential outlooks for Portugal using meteorological indices of fire danger
Sílvia A. Nunes, Carlos C. DaCamara, Kamil F. Turkman, Teresa J. Calado, and Ricardo M. Trigo
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-60,https://doi.org/10.5194/nhess-2019-60, 2019
Manuscript under review for NHESS
Short summary
Fire danger rating over Mediterranean Europe based on fire radiative power derived from Meteosat
Miguel M. Pinto, Carlos C. DaCamara, Isabel F. Trigo, Ricardo M. Trigo, and K. Feridun Turkman
Nat. Hazards Earth Syst. Sci., 18, 515-529, https://doi.org/10.5194/nhess-18-515-2018,https://doi.org/10.5194/nhess-18-515-2018, 2018
Short summary
Related subject area  
Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Simulating the effects of weather and climate on large wildfires in France
Renaud Barbero, Thomas Curt, Anne Ganteaume, Eric Maillé, Marielle Jappiot, and Adeline Bellet
Nat. Hazards Earth Syst. Sci., 19, 441-454, https://doi.org/10.5194/nhess-19-441-2019,https://doi.org/10.5194/nhess-19-441-2019, 2019
Short summary
A method of deriving operation-specific ski run classes for avalanche risk management decisions in mechanized skiing
Reto Sterchi and Pascal Haegeli
Nat. Hazards Earth Syst. Sci., 19, 269-285, https://doi.org/10.5194/nhess-19-269-2019,https://doi.org/10.5194/nhess-19-269-2019, 2019
Short summary
Automated snow avalanche release area delineation – validation of existing algorithms and proposition of a new object-based approach for large-scale hazard indication mapping
Yves Bühler, Daniel von Rickenbach, Andreas Stoffel, Stefan Margreth, Lukas Stoffel, and Marc Christen
Nat. Hazards Earth Syst. Sci., 18, 3235-3251, https://doi.org/10.5194/nhess-18-3235-2018,https://doi.org/10.5194/nhess-18-3235-2018, 2018
Short summary
Brief Communication: Measuring rock decelerations and rotation changes during short-duration ground impacts
Andrin Caviezel and Werner Gerber
Nat. Hazards Earth Syst. Sci., 18, 3145-3151, https://doi.org/10.5194/nhess-18-3145-2018,https://doi.org/10.5194/nhess-18-3145-2018, 2018
Short summary
Impact of wildfires on Canada's oil sands facilities
Nima Khakzad
Nat. Hazards Earth Syst. Sci., 18, 3153-3166, https://doi.org/10.5194/nhess-18-3153-2018,https://doi.org/10.5194/nhess-18-3153-2018, 2018
Short summary
Cited articles  
Alexandridis, A., Vakalis, D., Siettos, C. I., and Bafas, G. V.: A Cellular Automata model for forest fire spread prediction: The case of the wildfire that swept through Spetses Island in 1990, Appl. Math. Comput., 204, 191–201, https://doi.org/10.1016/j.amc.2008.06.046, 2008. a, b, c, d, e
Alexandridis, A., Russo, L., Vakalis, D., Bafas, G. V., and Siettos, C. I.: Wildland fire spread modelling using cellular automata: evolution in large-scale spatially heterogeneous environments under fire suppresion tactics, Int. J. Wildland Fire, 20, 633–647, https://doi.org/10.1071/WF09119, 2011. a, b, c
Amraoui, M., Liberato, M. L. R., Calado, T. J., DaCamara, C. C., Coelho, L. P., Trigo, R. M., and Gouveia, C. M.: Fire activity over Mediterranean Europe based on information from Meteosat-8, Forest Ecol. Manage., 294, 62–75, https://doi.org/10.1016/j.foreco.2012.08.032, 2013. a
Amraoui, M., Pereira, M. G., DaCamara, C. C., and Calado, T. J.: Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region, Sci. Total Environ., 524-525, 32–39, https://doi.org/10.1016/j.scitotenv.2015.04.032, 2015. a
ANPC: Tavira/Cachopo/Catraia ocurrence report 2012080021067, National Authority for Civil Protection, available at: https://www.bombeiros.pt/wp-content/uploads/2012/09/Relatorio-de-ocorrencia-2012080021067-Tavira_Cachopo_Catraia.pdf (last access: 17 January 2018), 2012. a
Publications Copernicus
Download
Short summary
Cellular automata are useful tools to simulate wildfire propagation. We design a cellular automaton to simulate a severe wildfire that took place in Portugal in 2012 and resulted in almost 25 000 ha burned. The explosive stage is adequately modeled when refining the role played by the wind in fire spreading. Results show a probability of ignition out of the limits of the observed scar, information that may help choose where to allocate resources for firefighting.
Cellular automata are useful tools to simulate wildfire propagation. We design a cellular...
Citation