Articles | Volume 19, issue 11
https://doi.org/10.5194/nhess-19-2451-2019
https://doi.org/10.5194/nhess-19-2451-2019
Research article
 | Highlight paper
 | 
05 Nov 2019
Research article | Highlight paper |  | 05 Nov 2019

The first version of the Pan-European Indoor Radon Map

Javier Elío, Giorgia Cinelli, Peter Bossew, José Luis Gutiérrez-Villanueva, Tore Tollefsen, Marc De Cort, Alessio Nogarotto, and Roberto Braga

Related authors

H2O and Cl in deep crustal melts: the message of melt inclusions in metamorphic rocks
Silvio Ferrero, Alessia Borghini, Laurent Remusat, Gautier Nicoli, Bernd Wunder, and Roberto Braga
Eur. J. Mineral., 35, 1031–1049, https://doi.org/10.5194/ejm-35-1031-2023,https://doi.org/10.5194/ejm-35-1031-2023, 2023
Short summary
Radon metrology for use in climate change observation and radiation protection at the environmental level
Stefan Röttger, Annette Röttger, Claudia Grossi, Arturo Vargas, Ute Karstens, Giorgia Cinelli, Edward Chung, Dafina Kikaj, Chris Rennick, Florian Mertes, and Ileana Radulescu
Adv. Geosci., 57, 37–47, https://doi.org/10.5194/adgeo-57-37-2022,https://doi.org/10.5194/adgeo-57-37-2022, 2022
Short summary
The European Radiological Data Exchange Platform (EURDEP): 25 years of monitoring data exchange
Marco Sangiorgi, Miguel Angel Hernández-Ceballos, Kevin Jackson, Giorgia Cinelli, Konstantins Bogucarskis, Luca De Felice, Andrei Patrascu, and Marc De Cort
Earth Syst. Sci. Data, 12, 109–118, https://doi.org/10.5194/essd-12-109-2020,https://doi.org/10.5194/essd-12-109-2020, 2020
Short summary
30 years of European Commission Radioactivity Environmental Monitoring data bank (REMdb) – an open door to boost environmental radioactivity research
Marco Sangiorgi, Miguel Angel Hernández Ceballos, Giorgia Iurlaro, Giorgia Cinelli, and Marc de Cort
Earth Syst. Sci. Data, 11, 589–601, https://doi.org/10.5194/essd-11-589-2019,https://doi.org/10.5194/essd-11-589-2019, 2019
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Brief communication: The Lahaina Fire disaster – how models can be used to understand and predict wildfires
Timothy W. Juliano, Fernando Szasdi-Bardales, Neil P. Lareau, Kasra Shamsaei, Branko Kosović, Negar Elhami-Khorasani, Eric P. James, and Hamed Ebrahimian
Nat. Hazards Earth Syst. Sci., 24, 47–52, https://doi.org/10.5194/nhess-24-47-2024,https://doi.org/10.5194/nhess-24-47-2024, 2024
Short summary
Prediction of natural dry-snow avalanche activity using physics-based snowpack simulations
Stephanie Mayer, Frank Techel, Jürg Schweizer, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 23, 3445–3465, https://doi.org/10.5194/nhess-23-3445-2023,https://doi.org/10.5194/nhess-23-3445-2023, 2023
Short summary
Automated Avalanche Terrain Exposure Scale (ATES) mapping – Local validation and optimization in Western Canada
John Sykes, Håvard Toft, Pascal Haegeli, and Grant Statham
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-112,https://doi.org/10.5194/nhess-2023-112, 2023
Revised manuscript accepted for NHESS
Short summary
Early warning system for ice collapses and river blockages in the Sedongpu Valley, southeastern Tibetan Plateau
Wei Yang, Zhongyan Wang, Baosheng An, Yingying Chen, Chuanxi Zhao, Chenhui Li, Yongjie Wang, Weicai Wang, Jiule Li, Guangjian Wu, Lin Bai, Fan Zhang, and Tandong Yao
Nat. Hazards Earth Syst. Sci., 23, 3015–3029, https://doi.org/10.5194/nhess-23-3015-2023,https://doi.org/10.5194/nhess-23-3015-2023, 2023
Short summary
Fire risk modeling: an integrated and data-driven approach applied to Sicily
Alba Marquez Torres, Giovanni Signorello, Sudeshna Kumar, Greta Adamo, Ferdinando Villa, and Stefano Balbi
Nat. Hazards Earth Syst. Sci., 23, 2937–2959, https://doi.org/10.5194/nhess-23-2937-2023,https://doi.org/10.5194/nhess-23-2937-2023, 2023
Short summary

Cited articles

Alexander, D. L. J., Tropsha, A., and Winkler, D. A.: Beware of R2: Simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models, J. Chem. Inf. Model., 55, 1316–1322, https://doi.org/10.1021/acs.jcim.5b00206, 2015. 
Appleton, J. D. and Miles, J. C. H.: A statistical evaluation of the geogenic controls on indoor radon concentrations and radon risk, J. Environ. Radioact., 101, 799–803, https://doi.org/10.1016/j.jenvrad.2009.06.002, 2010. 
Appleton, J. D., Miles, J. C. H., Green, B. M. R., and Larmour, R.: Pilot study of the application of Tellus airborne radiometric and soil geochemical data for radon mapping, J. Environ. Radioact., 99, 1687–1697, https://doi.org/10.1016/j.jenvrad.2008.03.011, 2008. 
Armstrong, M. and Boufassa, A.: Comparing the robustness of ordinary kriging and lognormal kriging: Outlier resistance, Math. Geol., 20, 447–457, https://doi.org/10.1007/BF00892988, 1988. 
Asch, K.: The 1:5 Million International Geological Map of Europe and Adjacent Areas: Development and Implementation of a GIS-enabled Concept, Geologisches Jahrbuch SA, Schweizerbart Science Publishers, Stuttgart, Germany, 2003. 
Short summary
The first version of the Pan-European Indoor Radon Map is presented in this article. The map has been developed using summary statistics estimated from 1.2 million samples. It represents an average radon concentration per 10 km x 10 km grid cell under the assumption that there are dwellings in the grid cell. It is a major contribution to the understanding of the exposure to ionizing radiation of Europeans and a first step towards a European radon exposure and, in the future, radon dose map.
Altmetrics
Final-revised paper
Preprint