Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.883 IF 2.883
  • IF 5-year value: 3.321 IF 5-year
    3.321
  • CiteScore value: 3.07 CiteScore
    3.07
  • SNIP value: 1.336 SNIP 1.336
  • IPP value: 2.80 IPP 2.80
  • SJR value: 1.024 SJR 1.024
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 81 Scimago H
    index 81
  • h5-index value: 43 h5-index 43
NHESS | Articles | Volume 19, issue 11
Nat. Hazards Earth Syst. Sci., 19, 2451–2464, 2019
https://doi.org/10.5194/nhess-19-2451-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Nat. Hazards Earth Syst. Sci., 19, 2451–2464, 2019
https://doi.org/10.5194/nhess-19-2451-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 05 Nov 2019

Research article | 05 Nov 2019

The first version of the Pan-European Indoor Radon Map

Javier Elío et al.
Related authors  
The European Radiological Data Exchange Platform (EURDEP): 25 years of monitoring data exchange
Marco Sangiorgi, Miguel Angel Hernández-Ceballos, Kevin Jackson, Giorgia Cinelli, Konstantins Bogucarskis, Luca De Felice, Andrei Patrascu, and Marc De Cort
Earth Syst. Sci. Data, 12, 109–118, https://doi.org/10.5194/essd-12-109-2020,https://doi.org/10.5194/essd-12-109-2020, 2020
Short summary
30 years of European Commission Radioactivity Environmental Monitoring data bank (REMdb) – an open door to boost environmental radioactivity research
Marco Sangiorgi, Miguel Angel Hernández Ceballos, Giorgia Iurlaro, Giorgia Cinelli, and Marc de Cort
Earth Syst. Sci. Data, 11, 589–601, https://doi.org/10.5194/essd-11-589-2019,https://doi.org/10.5194/essd-11-589-2019, 2019
Short summary
Related subject area  
Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Snow gliding and glide-snow avalanches: recent outcomes from two experimental test sites in Aosta Valley (northwestern Italian Alps)
Margherita Maggioni, Danilo Godone, Barbara Frigo, and Michele Freppaz
Nat. Hazards Earth Syst. Sci., 19, 2667–2676, https://doi.org/10.5194/nhess-19-2667-2019,https://doi.org/10.5194/nhess-19-2667-2019, 2019
Stability charts based on the finite element method for underground cavities in soft carbonate rocks: validation through case-study applications
Michele Perrotti, Piernicola Lollino, Nunzio Luciano Fazio, and Mario Parise
Nat. Hazards Earth Syst. Sci., 19, 2079–2095, https://doi.org/10.5194/nhess-19-2079-2019,https://doi.org/10.5194/nhess-19-2079-2019, 2019
Short summary
Exploring the relationship between avalanche hazard and run list terrain choices at a helicopter skiing operation
Reto Sterchi, Pascal Haegeli, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 19, 2011–2026, https://doi.org/10.5194/nhess-19-2011-2019,https://doi.org/10.5194/nhess-19-2011-2019, 2019
Short summary
Three-dimensional inverse modeling of EM-LIN data for the exploration of coastal sinkholes in Quintana Roo, Mexico
Marco A. Perez-Flores, Luis E. Ochoa-Tinajero, and Almendra Villela y Mendoza
Nat. Hazards Earth Syst. Sci., 19, 1779–1787, https://doi.org/10.5194/nhess-19-1779-2019,https://doi.org/10.5194/nhess-19-1779-2019, 2019
Short summary
Wildland fire potential outlooks for Portugal using meteorological indices of fire danger
Sílvia A. Nunes, Carlos C. DaCamara, Kamil F. Turkman, Teresa J. Calado, Ricardo M. Trigo, and Maria A. A. Turkman
Nat. Hazards Earth Syst. Sci., 19, 1459–1470, https://doi.org/10.5194/nhess-19-1459-2019,https://doi.org/10.5194/nhess-19-1459-2019, 2019
Short summary
Cited articles  
Alexander, D. L. J., Tropsha, A., and Winkler, D. A.: Beware of R2: Simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models, J. Chem. Inf. Model., 55, 1316–1322, https://doi.org/10.1021/acs.jcim.5b00206, 2015. 
Appleton, J. D. and Miles, J. C. H.: A statistical evaluation of the geogenic controls on indoor radon concentrations and radon risk, J. Environ. Radioact., 101, 799–803, https://doi.org/10.1016/j.jenvrad.2009.06.002, 2010. 
Appleton, J. D., Miles, J. C. H., Green, B. M. R., and Larmour, R.: Pilot study of the application of Tellus airborne radiometric and soil geochemical data for radon mapping, J. Environ. Radioact., 99, 1687–1697, https://doi.org/10.1016/j.jenvrad.2008.03.011, 2008. 
Armstrong, M. and Boufassa, A.: Comparing the robustness of ordinary kriging and lognormal kriging: Outlier resistance, Math. Geol., 20, 447–457, https://doi.org/10.1007/BF00892988, 1988. 
Asch, K.: The 1:5 Million International Geological Map of Europe and Adjacent Areas: Development and Implementation of a GIS-enabled Concept, Geologisches Jahrbuch SA, Schweizerbart Science Publishers, Stuttgart, Germany, 2003. 
Publications Copernicus
Download
Short summary
The first version of the Pan-European Indoor Radon Map is presented in this article. The map has been developed using summary statistics estimated from 1.2 million samples. It represents an average radon concentration per 10 km x 10 km grid cell under the assumption that there are dwellings in the grid cell. It is a major contribution to the understanding of the exposure to ionizing radiation of Europeans and a first step towards a European radon exposure and, in the future, radon dose map.
The first version of the Pan-European Indoor Radon Map is presented in this article. The map has...
Citation