Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.102 IF 3.102
  • IF 5-year value: 3.284 IF 5-year
    3.284
  • CiteScore value: 5.1 CiteScore
    5.1
  • SNIP value: 1.37 SNIP 1.37
  • IPP value: 3.21 IPP 3.21
  • SJR value: 1.005 SJR 1.005
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 90 Scimago H
    index 90
  • h5-index value: 42 h5-index 42
NHESS | Articles | Volume 19, issue 3
Nat. Hazards Earth Syst. Sci., 19, 555–570, 2019
https://doi.org/10.5194/nhess-19-555-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Nat. Hazards Earth Syst. Sci., 19, 555–570, 2019
https://doi.org/10.5194/nhess-19-555-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 19 Mar 2019

Research article | 19 Mar 2019

Impacts of the eastern route of the South-to-North Water Diversion Project emergency operation on flooding and drainage in water-receiving areas: an empirical case in China

Kun Wang et al.

Related subject area

Hydrological Hazards
Invited perspectives: How machine learning will change flood risk and impact assessment
Dennis Wagenaar, Alex Curran, Mariano Balbi, Alok Bhardwaj, Robert Soden, Emir Hartato, Gizem Mestav Sarica, Laddaporn Ruangpan, Giuseppe Molinario, and David Lallemant
Nat. Hazards Earth Syst. Sci., 20, 1149–1161, https://doi.org/10.5194/nhess-20-1149-2020,https://doi.org/10.5194/nhess-20-1149-2020, 2020
Short summary
The role of spatial dependence for large-scale flood risk estimation
Ayse Duha Metin, Nguyen Viet Dung, Kai Schröter, Sergiy Vorogushyn, Björn Guse, Heidi Kreibich, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 20, 967–979, https://doi.org/10.5194/nhess-20-967-2020,https://doi.org/10.5194/nhess-20-967-2020, 2020
Short summary
A method to use proxy data of runoff-related impacts for the evaluation of a model mapping intense storm runoff hazard: application to the railway context
Isabelle Braud, Lilly-Rose Lagadec, Loïc Moulin, Blandine Chazelle, and Pascal Breil
Nat. Hazards Earth Syst. Sci., 20, 947–966, https://doi.org/10.5194/nhess-20-947-2020,https://doi.org/10.5194/nhess-20-947-2020, 2020
Short summary
Predictive skill for atmospheric rivers in the western Iberian Peninsula
Alexandre M. Ramos, Pedro M. Sousa, Emanuel Dutra, and Ricardo M. Trigo
Nat. Hazards Earth Syst. Sci., 20, 877–888, https://doi.org/10.5194/nhess-20-877-2020,https://doi.org/10.5194/nhess-20-877-2020, 2020
Estimation of evapotranspiration by the Food and Agricultural Organization of the United Nations (FAO) Penman–Monteith temperature (PMT) and Hargreaves–Samani (HS) models under temporal and spatial criteria – a case study in Duero basin (Spain)
Rubén Moratiel, Raquel Bravo, Antonio Saa, Ana M. Tarquis, and Javier Almorox
Nat. Hazards Earth Syst. Sci., 20, 859–875, https://doi.org/10.5194/nhess-20-859-2020,https://doi.org/10.5194/nhess-20-859-2020, 2020
Short summary

Cited articles

Abbott, M. B.: Computational Hydraulics, Pitman, London, 1979. 
An, W. C. and Li, X. M.: Phosphate adsorption characteristics at the sediment – water interface and phosphorus fractions in Nansi Lake, China, and its main inflow rivers, Environ. Monit. Assess., 173–184, https://doi.org/10.1007/s10661-007-0149-6, 2009. 
Aron, G., White, E. L., and Coelen, S. P.: Feasibility of Interbasin Water Transfer, J. Am. Water Resour. Assoc., 13, 1021–1034, https://doi.org/10.1111/j.1752-1688.1977.tb03867.x, 1977. 
Arrighi, C., Brugioni, M., Castelli, F., Franceschini, S., and Mazzanti, B.: Urban micro-scale flood risk estimation with parsimonious hydraulic modelling and census data, Nat. Hazards Earth Syst. Sci., 13, 1375–1391, https://doi.org/10.5194/nhess-13-1375-2013, 2013. 
Bisht, D. S., Chatterjee, C., Kalakoti, S., Upadhyay, P., Sahoo, M., and Panda, A.: Modeling urban floods and drainage using SWMM and MIKE URBAN: a case study, Nat. Hazards, 84, 749–776, https://doi.org/10.1007/s11069-016-2455-1, 2016. 
Publications Copernicus
Download
Short summary
To assess the impacts of the eastern route of the South-to-North Water Diversion Project (ER-SNWDP) of China on water-receiving areas' floods and waterlogging, a coupled 1-D/2-D hydrodynamic model is built, taking the Nansi Lake basin as an example. Some impacts, especially for emergency operations, were analysed, and selected implications are presented for the integrated management of large-scale interbasin water diversions.
To assess the impacts of the eastern route of the South-to-North Water Diversion Project...
Citation