Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.883 IF 2.883
  • IF 5-year value: 3.321 IF 5-year
    3.321
  • CiteScore value: 3.07 CiteScore
    3.07
  • SNIP value: 1.336 SNIP 1.336
  • IPP value: 2.80 IPP 2.80
  • SJR value: 1.024 SJR 1.024
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 81 Scimago H
    index 81
  • h5-index value: 43 h5-index 43
NHESS | Articles | Volume 19, issue 3
Nat. Hazards Earth Syst. Sci., 19, 629–653, 2019
https://doi.org/10.5194/nhess-19-629-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Advances in computational modelling of natural hazards and...

Nat. Hazards Earth Syst. Sci., 19, 629–653, 2019
https://doi.org/10.5194/nhess-19-629-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 25 Mar 2019

Research article | 25 Mar 2019

Application of the Levenburg–Marquardt back propagation neural network approach for landslide risk assessments

Junnan Xiong et al.

Viewed

Total article views: 1,172 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
877 266 29 1,172 27 30
  • HTML: 877
  • PDF: 266
  • XML: 29
  • Total: 1,172
  • BibTeX: 27
  • EndNote: 30
Views and downloads (calculated since 06 Dec 2018)
Cumulative views and downloads (calculated since 06 Dec 2018)

Viewed (geographical distribution)

Total article views: 844 (including HTML, PDF, and XML) Thereof 828 with geography defined and 16 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 05 Jun 2020
Publications Copernicus
Download
Short summary
We want to know which areas are prone to landslides and where pipelines are more unsafe. Through a model, we determined that 33.18 % and 40.46 % of the slopes in the study are were in high-hazard and extremely high-hazard areas, respectively. The number and length of pipe segments in the highly vulnerable and extremely vulnerable areas accounted for about 12 % of the total. In general, the pipeline risk within Qingchuan and Jian'ge counties was relatively high.
We want to know which areas are prone to landslides and where pipelines are more unsafe. Through...
Citation