Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.102 IF 3.102
  • IF 5-year value: 3.284 IF 5-year
    3.284
  • CiteScore value: 5.1 CiteScore
    5.1
  • SNIP value: 1.37 SNIP 1.37
  • IPP value: 3.21 IPP 3.21
  • SJR value: 1.005 SJR 1.005
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 90 Scimago H
    index 90
  • h5-index value: 42 h5-index 42
NHESS | Articles | Volume 19, issue 3
Nat. Hazards Earth Syst. Sci., 19, 679–696, 2019
https://doi.org/10.5194/nhess-19-679-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Nat. Hazards Earth Syst. Sci., 19, 679–696, 2019
https://doi.org/10.5194/nhess-19-679-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 29 Mar 2019

Research article | 29 Mar 2019

Changes in ground deformation prior to and following a large urban landslide in La Paz, Bolivia, revealed by advanced InSAR

Nicholas J. Roberts et al.

Viewed

Total article views: 1,345 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
923 389 33 1,345 121 29 25
  • HTML: 923
  • PDF: 389
  • XML: 33
  • Total: 1,345
  • Supplement: 121
  • BibTeX: 29
  • EndNote: 25
Views and downloads (calculated since 13 Aug 2018)
Cumulative views and downloads (calculated since 13 Aug 2018)

Viewed (geographical distribution)

Total article views: 1,033 (including HTML, PDF, and XML) Thereof 1,011 with geography defined and 22 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 11 Jul 2020
Publications Copernicus
Download
Short summary
La Paz, Bolivia, experiences frequent damaging landslides. We quantify creep before and after the city’s largest modern landslide using spaceborne InSAR. Creep of ancient landslide deposits increased in rate and extent following failure and extended into adjacent intact materials. Accelerated steady-state creep reflects complex post-failure stress redistribution. Landslide risk in La Paz, which is underlain by many large ancient landslides, may be even greater than previously thought.
La Paz, Bolivia, experiences frequent damaging landslides. We quantify creep before and after...
Citation