Aghakhani, H., Dalbey, K., Salac, D., and Patra, A. K.: Heuristic and Eulerian
interface capturing approaches for shallow water type flow and application to
granular flows, Comput. Meth. Appl. Mech. Eng., 304, 243–264, https://doi.org/10.1016/j.cma.2016.02.021, 2016. a

Ai, M., Kong, X., and Li, K.: A general theory for orthogonal array based latin
hypercube sampling, Statist. Sin., 26, 761–777, https://doi.org/10.5705/ss.202015.0029, 2016. a

Akhavan-Safaei, A.: Analysis and Implementation of Multiple Models and
Multi-Models for Shallow-Water Type Models of Large Mass Flows, MS thesis,
University at Buffalo, Buffalo, 2018. a

Allan, J.: Geology of the northern Colima and Zacoalco grabens, southwest Mexico:
Late Cenozoic rifting in the Mexican volcanic belt, Geol. Soc. Am. Bull., 97,
473–485, https://doi.org/10.1130/0016-7606(1986)97<473:GOTNCA>2.0.CO;2, 1986. a

Bartelt, P. and McArdell, B.: Granulometric investigations of snow avalanches,
J. Glaciol., 55, 829–833, 2009. a

Bartelt, P., Salm, B., and Gruber, U.: Calculating dense-snow avalanche runout
using a Voellmy-fluid model with active/passive longitudinal straining, J.
Glaciol., 45, 242–254, 1999. a

Bayarri, M. J., Berger, J. O., Calder, E. S., Dalbey, K., Lunagomez, S., Patra,
A. K., Pitman, E. B., Spiller, E. T., and Wolpert, R. L.: Using Statistical and
Computer Models to Quantify Volcanic Hazards, Technometrics, 51, 402–413,
https://doi.org/10.1198/TECH.2009.08018, 2009. a

Bayarri, M. J., Berger, J. O., Calder, E. S., Patra, A. K., Pitman, E. B.,
Spiller, E. T., and Wolpert, R. L.: Probabilistic Quantification of Hazards:
A Methodology Using Small Ensembles of Physics-Based Simulations and Statistical
Surrogates, Int. J. Uncertain. Quant., 5, 297–325, 2015. a, b

Capra, L., Manea, V. C., Manea, M., and Norini, G.: The importance of digital
elevation model resolution on granular flow simulations: a test case for Colima
volcano using TITAN2D computational routine, Nat. Hazards, 59, 665–680,
https://doi.org/10.1007/s11069-011-9788-6, 2011. a

Charbonnier, S. J. and Gertisser, R.: Numerical simulations of block-and-ash
flows using the Titan2D flow model: examples from the 2006 eruption of Merapi
Volcano, Java, Indonesia, Bull. Volcanol., 71, 953–959, https://doi.org/10.1007/s00445-009-0299-1, 2009. a

Christen, M., Kowalski, J., and Bartelt, P.: RAMMS: Numerical simulation of
dense snow avalanches in three-dimensional terrain, Cold Reg. Sci. Technol.,
63, 1–14, https://doi.org/10.1016/j.coldregions.2010.04.005, 2010. a

Cortés, A., Garduño, V., Navarro, C., Komorowski, J., Saucedo, R.,
Macías, J., and Gavilanes, J.: Geología del Complejo Volcánico de
Colima, Series de Cartas y Mapas del Instituto de Geología, 10, 37, 2005. a

Cortés, A., Garduño, V., Navarro-Ochoa, C., Komorowski, J., Saucedo, R.,
Macías, J., and Gavilanes, J.: Geologic mapping of the Colima Volcanic
Complex (Mexico), and implications for hazard assessment, in: vol. Stratigraphy
and Geology of Volcanic Areas, chap. 12, Geological Society of America, Boulder,
Colorado, USA, 251–266, https://doi.org/10.1130/2010.2464(12), 2010. a

Dade, W. B. and Huppert, H. E.: Long-runout rockfalls, Geology, 26, 803–806,
https://doi.org/10.1130/0091-7613(1998)026<0803:LRR>2.3.CO;2, 1998. a

Dalbey, K. R.: Predictive Simulation and Model Based Hazard Maps, PhD thesis,
University at Buffalo, Buffalo, 2009. a

Dalbey, K. R., Patra, A. K., Pitman, E. B., Bursik, M. I., and Sheridan, M. F.:
Input uncertainty propagation methods and hazard mapping of geophysical mass
flows, J. Geophys. Res.-Solid, 113, 1–16, https://doi.org/10.1029/2006JB004471, 2008. a

Drucker, D. C. and Prager, W.: Soil mechanics and plastic analysis for limit
design, Q. Appl. Math., 10, 157–165, 1952. a

Farrell, K., Tinsley, J., and Faghihi, D.: A Bayesian framework for adaptive
selection, calibration, and validation of coarse-grained models of atomistic
systems, J. Comput. Phys., 295, 189–208, https://doi.org/10.1016/J.JCP.2015.03.071, 2015. a

Fischer, J., Kowalski, J., and Pudasaini, S. P.: Topographic curvature effects
in applied avalanche modeling, Cold Reg. Sci. Technol., 74–75, 21–30,
https://doi.org/10.1016/j.coldregions.2012.01.005, 2012. a, b

Forterre, Y. and Pouliquen, O.: Stability analysis of rapid granular chute flows:
formation of longitudinal vortices, J. Fluid Mech., 467, 361–387, 2002. a, b

Forterre, Y. and Pouliquen, O.: Long-surface-wave instability in dense granular
flows, J. Fluid Mech., 486, 21–50, https://doi.org/10.1017/S0022112003004555, 2003. a, b, c, d

Ghosh, T. and Krishnamurti, T. N.: Improvements in Hurricane Intensity Forecasts
from a Multimodel Superensemble Utilizing a Generalized Neural Network Technique,
Weather Forecast., 33, 873–885, https://doi.org/10.1175/WAF-D-17-0006.1, 2018. a

Gilbert, S.: Model building and a definition of science, J. Res. Sci. Teach.,
28, 73–79, https://doi.org/10.1002/tea.3660280107, 1991. a

Gruber, U. and Bartelt, P.: Snow avalanche hazard modelling of large areas
using shallow water numerical models and GIS, Environ. Model. Softw., 22,
1472–1481, https://doi.org/10.1016/j.envsoft.2007.01.001, 2007. a

Iverson, R. M. and George, D. L.: A depth-averaged debris-flow model that
includes the effects of evolving dilatancy. I. Physical basis, P. Roy. Soc.
Lond. A, 470, 20130819, https://doi.org/10.1098/rspa.2013.0819, 2014. a

Kelfoun, K.: Suitability of simple rheological laws for the numerical simulation
of dense pyroclastic flows and long-runout volcanic avalanches, J. Geophysi.
Res., 116, B08209, https://doi.org/10.1029/2010JB007622, 2011. a

Kelfoun, K., Samaniego, P., Palacios, P., and Barba, D.: Testing the suitability
of frictional behaviour for pyroclastic flow simulation by comparison with a
well-constrained eruption at Tungurahua volcano (Ecuador), Bull. Volcanol., 71,
1057–1075, https://doi.org/10.1007/s00445-009-0286-6, 2009. a

Kern, M., Bartelt, P., Sovilla, B., and Buser, O.: Measured shear rates in large
dry and wet snow avalanches, J. Glaciol., 55, 327–338, 2009. a

Krishnamurti, T. N., Kumar, V., Simon, A., Bhardwaj, A., Ghosh, T., and Ross,
R.: A review of multimodel superensemble forecasting for weather, seasonal
climate, and hurricanes, Rev. Geophys., 54, 336–377, https://doi.org/10.1002/2015RG000513, 2016. a

Luhr, J. and Carmichael, J.: Geology of the Volán de Colima, Serie de
Divulgación, Universidad Nacional de México, Instituto de Geología, México, 1990. a

Macorps, E., Charbonnier, S. J., Varley, N. R., Capra, L., Atlas, Z., and
Cabré, J.: Stratigraphy, sedimentology and inferred flow dynamics from the
July 2015 block-and-ash flow deposits at Volcán de Colima, Mexico, J.
Volcanol. Geoth. Res., 349, 99–116, https://doi.org/10.1016/j.jvolgeores.2017.09.025, 2018. a

McKay, M. D., Beckman, R. J., and Conover, W. J.: A comparison of three methods
for selecting values of input variables in the analysis of output from a
computer code, Technometrics, 21, 239–245, 1979. a

Mooser, F.: Los volcanes de Colima, in: vol. 61, Universidad Nacional
Autónoma de México, Instituto de Geología, México, 49–71, 1961. a

NASA – JPL: U.S. Releases Enhanced Shuttle Land Elevation Data, Shuttle
Radar Topography Mission (SRTM), Tech. rep., NASA, available at: https://www2.jpl.nasa.gov/srtm/
(last access: 16 October 2016), 2014. a, b, c, d, e, f

Norini, G., De Beni, E., Andronico, D., Polacci, M., Burton, M., and Zucca, F.:
The 16 November 2006 flank collapse of the south-east crater at Mount Etna,
Italy: Study of the deposit and hazard assessment, J. Geophys. Res.-Solid Earth,
114, b02204, https://doi.org/10.1029/2008JB005779, 2009. a

Ogburn, S. E., Berger, J., Calder, E. S., Lopes, D., Patra, A., Pitman, E. B.,
Rutarindwa, R., Spiller, E., and Wolpert, R. L.: Pooling strength amongst
limited datasets using hierarchical Bayesian analysis, with application to
pyroclastic density current mobility metrics, Stat. Volcanol., 2, 1–26,
https://doi.org/10.5038/2163-338X.2.1, 2016. a

Owen, A. B.: Orthogonal arrays for computer experiments, integration and
visualization, Statist. Sin., 2, 439–452, 1992a. a

Owen, A. B.: A Central Limit Theorem for Latin Hypercube Sampling, J. Roy.
Stat. Soc., 54, 541–551, 1992b. a

Patra, A. K., Bauer, A. C., Nichita, C. C., Pitman, E. B., Sheridan, M. F.,
Bursik, M., Rupp, B., Webber, A., Stinton, A. J., Namikawa, L. M., and Renschler,
C. S.: Parallel adaptive numerical simulation of dry avalanches over natural
terrain, J. Volcanol. Geoth. Res., 139, 1–21, https://doi.org/10.1016/j.jvolgeores.2004.06.014, 2005. a, b

Patra, A. K., Nichita, C., Bauer, A., Pitman, E., Bursik, M., and Sheridan, M.:
Parallel adaptive discontinuous Galerkin approximation for thin layer avalanche
modeling, Comput. Geosci., 32, 912–926, https://doi.org/10.1016/j.cageo.2005.10.023, 2006. a

Patra, A. K., Bevilacqua, A., and Akhavan-Safaei, A.: Analyzing Complex Models
using Data and Statistics, in: vol. 10861 of ICCS, Lecture Notes in Computer
Science, chap. 57, Springer, Cham, iSBN 978-3-319-93701-4, 724–736, 2018a. a

Patra, A. K., Bevilacqua, A., Akhavan-Safaei, A., Pitman, E., Bursik, M., and
Hyman, D.: Comparative analysis of the structures and outcomes of geophysical
flow models and modeling assumptions using uncertainty quantification, arXiv.org,
1805.12104, 1–39, 2018b. a, b, c, d, e, f

Pierson, T.: Initiation and flow behavior of the 1980 pine creek and Muddy
River lahars, Mont St. Helens, Washington, Geol. Soc. Am. Bull., 96, 1056–1069, 1985. a, b, c, d, e, f, g

Pitman, E. B. and Le, L.: A two-fluid model for avalanche and debris flows, P.
Roy. Soc. Lond. A, 363, 1573–601, https://doi.org/10.1098/rsta.2005.1596, 2005. a

Ponce-Segura, J.: Historia de Atenquique, Talleres litográficos Vera,
Guadalajara, Jalisco, México, 1983. a, b, c, d, e

Popper, K. R.: The Logic of Scientific Discovery, Routledge, London, New York,
https://doi.org/10.2307/2104331, 1959. a

Pouliquen, O.: Scaling laws in granular flows down rough inclined planes, Phys.
Fluids, 11, 542–548, 1999. a, b

Pouliquen, O. and Forterre, Y.: Friction law for dense granular flows:
application to the motion of a mass down a rough inclined plane, J. Fluid Mech.,
453, 133–151, https://doi.org/10.1017/S0022112001006796, 2002. a, b, c, d, e, f

Procter, J. N., Cronin, S. J., Platz, T., Patra, A., Dalbey, K., Sheridan, M.,
and Neall, V.: Mapping block-and-ash flow hazards based on Titan 2D simulations:
a case study from Mt. Taranaki, NZ, Nat. Hazards, 53, 483–501,
https://doi.org/10.1007/s11069-009-9440-x, 2010. a

Pudasaini, S. P. and Hutter, K.: Rapid shear flows of dry granular masses down
curved and twisted channels, J. Fluid Mech., 495, 193–208, 2003. a

Ranjan, P. and Spencer, N.: Space-filling Latin hypercube designs based on
randomization restrictions in factorial experiments, Stat. Probab. Lett., 94,
239–247, https://doi.org/10.1016/j.spl.2014.07.032, 2014. a

Rankine, W. J. M.: On the Stability of Loose Earth, Philos. T. Roy. Soc. Lond.,
147, 9–27, 1857. a

Robin, C., Mossand, P., Camus, G., Cantagrel, J., Gourgaud, A., and Vincent,
P.: Eruptive history of the Colima volcanic complex (Mexico), J. Volcanol.
Geoth. Res., 31, 99–113, https://doi.org/10.1016/0377-0273(87)90008-4, 1987. a

Rupp, B.: An analysis of granular flows over natural terrain, MS thesis,
University at Buffalo, Buffalo, 2004. a, b, c

Rupp, B., Bursik, M., Namikawa, L., Webb, A., Patra, A. K., Saucedo, R.,
Macías, J. L., and Renschler, C.: Computational modeling of the 1991 block
and ash fows at Colima Volcano, Mèxico, Geol. Soc. Am. Spec. Pap., 402,
223–237, https://doi.org/10.1130/2006.2402(11), 2006. a

Salm, B.: Flow, flow transition and runout distances of flowing avalanches,
Ann. Glaciol., 18, 221–226, 1993. a

Salm, B., Burkard, A., and Gubler, H.: Berechnung von Fliesslawinen: eine
Anleitung für Praktiker mit Beispielen, Mitteilungen des Eidgenössische
Institutes für Schnee- und Lawinenforschung, n. 47, Davos Dorf, Switzerland, 1990. a, b

Saucedo, R.: The 1955 debris flow generated by intense rain fall at Atenquique,
Jalisco, Mexico, in: Regional Geomorphology Conference, Mexico City, Mexico, 2003. a

Saucedo, R., Macías, J. L., Sarocchi, D., Bursik, M., and Rupp, B.: The
rain-triggered Atenquique volcaniclastic debris flow of October 16, 1955 at
Nevado de Colima Volcano, Mexico, J. Volcanol. Geoth. Res., 173, 69–83, 2008. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s

Saucedo, R., Macías, J., Gavilanes, J., Arce, J., Komorowski, J., Gardner,
J., and Valdez-Moreno, G.: Eyewitness, stratigraphy, chemistry, and eruptive
dynamics of the 1913 Plinian eruption of Volcán de Colima, México, J.
Volcanol. Geoth. Res., 191, 149–166, https://doi.org/10.1016/j.jvolgeores.2010.01.011, 2010. a

Savage, S. B. and Hutter, K.: The motion of a finite mass of granular material
down a rough incline, J. Fluid Mech., 199, 177–215, https://doi.org/10.1017/S0022112089000340, 1989. a, b, c

Sheridan, M. F., Stinton, A., Patra, A., Pitman, E., Bauer, A., and Nichita, C.:
Evaluating Titan2D mass-flow model using the 1963 Little Tahoma Peak avalanches,
Mount Rainier, Washington, J. Volcanol. Geoth. Res., 139, 89–102,
https://doi.org/10.1016/j.jvolgeores.2004.06.011, 2005. a

Sheridan, M. F., Patra, A. K., Dalbey, K., and Hubbard, B.: Probabilistic
digital hazard maps for avalanches and massive pyroclastic flows using TITAN2D,
in: vol. Stratigraphy and geology of volcanic areas, chap. 14, Geological
Society of America, Boulder, Colorado, USA, 281–291, https://doi.org/10.1130/2010.2464(14), 2010. a

Spiller, E. T., Bayarri, M. J., Berger, J. O., Calder, E. S., Patra, A. K.,
Pitman, E. B., and Wolpert, R. L.: Automating Emulator Construction for
Geophysical Hazard Maps, SIAM/ASA J. Uncertain. Quant., 2, 126–152,
https://doi.org/10.1137/120899285, 2014.
a

Stefanescu, E. R., Bursik, M., Cordoba, G., Dalbey, K., Jones, M. D., Patra, A.
K., Pieri, D. C., Pitman, E. B., and Sheridan, M. F.: Digital elevation model
uncertainty and hazard analysis using a geophysical flow model, P. Roy. Soc.
Lond. A, 468, 1543–1563, https://doi.org/10.1098/rspa.2011.0711, 2012a. a

Stefanescu, E. R., Bursik, M., and Patra, A. K.: Effect of digital elevation
model on Mohr–Coulomb geophysical flow model output, Nat. Hazards, 62, 635–656,
https://doi.org/10.1007/s11069-012-0103-y, 2012b. a

Stein, M.: Large Sample Properties of Simulations Using Latin Hypercube Sampling,
Technometrics, 29, 143–151, 1987. a

Sulpizio, R., Capra, L., Sarocchi, D., Saucedo, R., Gavilanes-Ruiz, J., and
Varley, N.: Predicting the block-and-ash flow inundation areas at Volcán
de Colima (Colima, Mexico) based on the present day (February 2010) status,
J. Volcanol. Geoth. Res., 193, 49–66, https://doi.org/10.1016/j.jvolgeores.2010.03.007, 2010. a

Tang, B.: Orthogonal Array-Based Latin Hypercubes, J. Am. Stat. Assoc., 88,
1392–1397, 1993. a

Tarantola, A.: Inverse Problem Theory: Methods for Data Fitting and Model
Parameter Estimation, Elsevier, Amsterdam, New York, 1987. a

Tarantola, A. and Valette, B.: Inverse Problems = Quest for Information,
J. Geophys., 50, 159–170, 1982. a

VHUB: Titan2D Mass-Flow Simulation Tool, v 4.0.0, available at:
https://vhub.org/resources/titan2d, last access: 23 June 2016. a

Voellmy, A.: Über die Zerstörungskraft von Lawinen, Schweiz Bauzeitung,
73, 159–165, 212–217, 246–249, 280–285, 1955. a, b

Yu, B., Dalbey, K., Webb, A., Bursik, M., Patra, A. K., Pitman, E. B., and
Nichita, C.: Numerical issues in computing inundation areas over natural
terrains using Savage-Hutter theory, Nat. Hazards, 50, 249–267, https://doi.org/10.1007/s11069-008-9336-1, 2009. a

Zobin, V., Arámbula, R., Bretón, M., Reyes, G., Plascencia, I., Navarro,
C., Téllez, A., Campos, A., González, M., León, Z., Martínez,
A., and Ramírez, C.: Dynamics of the January 2013–June 2014 explosive-effusive
episode in the eruption of Volcán de Colima, México: insights from
seismic and video monitoring, Bull. Volcanol., 77, 31, https://doi.org/10.1007/s00445-015-0917-z, 2015. a