Articles | Volume 20, issue 1
https://doi.org/10.5194/nhess-20-197-2020
https://doi.org/10.5194/nhess-20-197-2020
Research article
 | 
17 Jan 2020
Research article |  | 17 Jan 2020

Sandbag replacement systems – a nonsensical and costly alternative to sandbagging?

Lena Lankenau, Christopher Massolle, Bärbel Koppe, and Veronique Krull

Related authors

Sandbag Replacement Systems – Stability, Functionality and Handling
Lena Lankenau, Christopher Massolle, Bäbel Koppe, and Veronique Krull
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-164,https://doi.org/10.5194/nhess-2019-164, 2019
Revised manuscript has not been submitted
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Identifying the drivers of private flood precautionary measures in Ho Chi Minh City, Vietnam
Thulasi Vishwanath Harish, Nivedita Sairam, Liang Emlyn Yang, Matthias Garschagen, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 23, 1125–1138, https://doi.org/10.5194/nhess-23-1125-2023,https://doi.org/10.5194/nhess-23-1125-2023, 2023
Short summary
Performance of the flood warning system in Germany in July 2021 – insights from affected residents
Annegret H. Thieken, Philip Bubeck, Anna Heidenreich, Jennifer von Keyserlingk, Lisa Dillenardt, and Antje Otto
Nat. Hazards Earth Syst. Sci., 23, 973–990, https://doi.org/10.5194/nhess-23-973-2023,https://doi.org/10.5194/nhess-23-973-2023, 2023
Short summary
Differences in volcanic risk perception among Goma's population before the Nyiragongo eruption of May 2021, Virunga volcanic province (DR Congo)
Blaise Mafuko Nyandwi, Matthieu Kervyn, François Muhashy Habiyaremye, François Kervyn, and Caroline Michellier
Nat. Hazards Earth Syst. Sci., 23, 933–953, https://doi.org/10.5194/nhess-23-933-2023,https://doi.org/10.5194/nhess-23-933-2023, 2023
Short summary
Empirical tsunami fragility modelling for hierarchical damage levels
Fatemeh Jalayer, Hossein Ebrahimian, Konstantinos Trevlopoulos, and Brendon Bradley
Nat. Hazards Earth Syst. Sci., 23, 909–931, https://doi.org/10.5194/nhess-23-909-2023,https://doi.org/10.5194/nhess-23-909-2023, 2023
Short summary
Quantifying the potential benefits of risk-mitigation strategies on future flood losses in Kathmandu Valley, Nepal
Carlos Mesta, Gemma Cremen, and Carmine Galasso
Nat. Hazards Earth Syst. Sci., 23, 711–731, https://doi.org/10.5194/nhess-23-711-2023,https://doi.org/10.5194/nhess-23-711-2023, 2023
Short summary

Cited articles

American National Standards Institute (ANSI) and FM Approvals: American National Standard for Flood Abatement Equipment, ANSI/FM Approvals 2510, FM Approvals, Norwood, 2014. 
AQUARIWA: Mobiler Hochwasserschutz in Gartow im Juni 2013, available at: http://www.aquariwa.de/die-einsaetze/aquariwa-in-gartow-juni-2013/#die-einsaetze/aquariwa-in-gartow-juni-2013/, last access: 25 September 2019. 
Biggar, K. and Masala, S.: Alternatives to sandbags for temporary flood protection, Alberta Transportation and Utilities Disaster Services Branch and Emergency Preparedness Canada, Edmonton, AB and Ottawa, ON, Canada, 1998. 
British Standards Institution (BSI): PAS 1188-2:2014 Flood protection products – Specification, Part 2: Temporary products, Third Edition, The British Standards Institution Group Headquarters, London, 2014. 
British Standards Institution (BSI): British Standards Institution Homepage, available at: https://www.bsigroup.com/en-GB/, last access: 25 September 2019a. 
Download
Short summary
Sandbag and sandbag replacement systems (SBRSs) for flood defence are compared in terms of functionality (practical tests), costs, time, helpers and logistics (fictitious realistic scenarios). SBRSs are comparable in their functionality to sandbagging. All of the SBRSs considered show time-saving and logistical advantages. Under the assumed conditions, the higher investment costs of the SBRSs are offset with one subsequent reuse of the system owing to lower costs for helpers and logistics.
Altmetrics
Final-revised paper
Preprint