Articles | Volume 20, issue 3
https://doi.org/10.5194/nhess-20-727-2020
https://doi.org/10.5194/nhess-20-727-2020
Research article
 | 
16 Mar 2020
Research article |  | 16 Mar 2020

Three-dimensional numerical simulation of mud flow from a tailing dam failure across complex terrain

Dayu Yu, Liyu Tang, and Chongcheng Chen

Related authors

ASSOCIATION RULE ANALYSIS FOR TOUR ROUTE RECOMMENDATION AND APPLICATION TO WCTSNOP
H. Fang, C. Chen, J. Lin, X. Liu, and D. Fang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W7, 1121–1126, https://doi.org/10.5194/isprs-archives-XLII-2-W7-1121-2017,https://doi.org/10.5194/isprs-archives-XLII-2-W7-1121-2017, 2017

Related subject area

Landslides and Debris Flows Hazards
Characteristics and causes of natural and human-induced landslides in a tropical mountainous region: the rift flank west of Lake Kivu (Democratic Republic of the Congo)
Jean-Claude Maki Mateso, Charles L. Bielders, Elise Monsieurs, Arthur Depicker, Benoît Smets, Théophile Tambala, Luc Bagalwa Mateso, and Olivier Dewitte
Nat. Hazards Earth Syst. Sci., 23, 643–666, https://doi.org/10.5194/nhess-23-643-2023,https://doi.org/10.5194/nhess-23-643-2023, 2023
Short summary
Spatio-temporal analysis of slope-type debris flow activity in Horlachtal, Austria, based on orthophotos and lidar data since 1947
Jakob Rom, Florian Haas, Tobias Heckmann, Moritz Altmann, Fabian Fleischer, Camillo Ressl, Sarah Betz-Nutz, and Michael Becht
Nat. Hazards Earth Syst. Sci., 23, 601–622, https://doi.org/10.5194/nhess-23-601-2023,https://doi.org/10.5194/nhess-23-601-2023, 2023
Short summary
Assessing the relationship between weather conditions and rockfall using terrestrial laser scanning to improve risk management
Tom Birien and Francis Gauthier
Nat. Hazards Earth Syst. Sci., 23, 343–360, https://doi.org/10.5194/nhess-23-343-2023,https://doi.org/10.5194/nhess-23-343-2023, 2023
Short summary
Using principal component analysis to incorporate multi-layer soil moisture information in hydrometeorological thresholds for landslide prediction: an investigation based on ERA5-Land reanalysis data
Nunziarita Palazzolo, David J. Peres, Enrico Creaco, and Antonino Cancelliere
Nat. Hazards Earth Syst. Sci., 23, 279–291, https://doi.org/10.5194/nhess-23-279-2023,https://doi.org/10.5194/nhess-23-279-2023, 2023
Short summary
Assessing uncertainties in landslide susceptibility predictions in a changing environment (Styrian Basin, Austria)
Raphael Knevels, Helene Petschko, Herwig Proske, Philip Leopold, Aditya N. Mishra, Douglas Maraun, and Alexander Brenning
Nat. Hazards Earth Syst. Sci., 23, 205–229, https://doi.org/10.5194/nhess-23-205-2023,https://doi.org/10.5194/nhess-23-205-2023, 2023
Short summary

Cited articles

Babaoglu, Y. and Simms, P. H.: Simulating deposition of high density tailings using smoothed particle hydrodynamics, Korea-Aust. Rheol. J., 29, 229–237, https://doi.org/10.1007/s13367-017-0024-0, 2017. 
Blight, G. E.: Destructive mudflows as a consequence of tailings dyke failures, Proc. Inst. Civil Eng.-Geotech. Eng., 125, 9–18, https://doi.org/10.1680/igeng.1997.28992, 1997. 
Burritt, R. L. and Christ, K. L.: Water risk in mining: Analysis of the Samarco dam failure, J. Clean. Prod., 178, 196–205, 2018. 
Cascini, L., Cuomo, S., Pastor, M., Sorbino, G., and Piciullo, L.: SPH run-out modelling of channelised landslides of the flow type, Geomorphology, 214, 502–513, https://doi.org/10.1016/j.geomorph.2014.02.031, 2014. 
Dai, Z. L., Huang, Y., Cheng, H. L., and Xu, Q.: 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake, Eng. Geol., 180, 21–33, https://doi.org/10.1016/j.enggeo.2014.03.018, 2014. 
Download
Short summary
In recent years, dam-break accidents in tailing ponds have happened frequently, which has resulted in verified loss of life and ecological disaster. Simulation of a tailing dam accident in advance is useful for understanding the tailing flow characteristics and assessing the possible extension of the impact area. In this paper, a 3-D CFD approach was proposed for reasonably and quickly predicting the flow routing and impact area of mud flow from a dam failure across 3-D terrain.
Altmetrics
Final-revised paper
Preprint