Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year
    2.693
  • CiteScore value: 2.43 CiteScore
    2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 73 Scimago H
    index 73
Volume 4, issue 1 | Copyright

Special issue: Landslide and flood hazards assessment

Nat. Hazards Earth Syst. Sci., 4, 117-131, 2004
https://doi.org/10.5194/nhess-4-117-2004
© Author(s) 2004. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  09 Mar 2004

09 Mar 2004

Quantitative risk analysis for landslides ‒ Examples from Bíldudalur, NW-Iceland

R. Bell and T. Glade R. Bell and T. Glade
  • Department of Geography, University of Bonn, Meckenheimer Allee 166, 53115 Bonn, Germany

Abstract. Although various methods to carry out quantitative landslide risk analyses are available, applications are still rare and mostly dependent on the occurrence of disasters. In Iceland, two catastrophic snow avalanches killed 34 people in 1995. As a consequence the Ministry of the Environment issued a new regulation on hazard zoning due to snow avalanches and landslides in 2000, which aims to prevent people living or working within the areas most at risk until 2010. The regulation requires to carry out landslide and snow avalanche risk analyses, however, a method to calculate landslide risk adopted to Icelandic conditions is still missing. Therefore, the ultimate goal of this study is to develop such a method for landslides, focussing on debris flows and rock falls and to test it in Bíldudalur, NW-Iceland.

Risk analysis, beside risk evaluation and risk management, is part of the holistic concept of risk assessment. Within this study, risk analysis is considered only, focussing on the risks to life. To calculate landslide risk, the spatial and temporal probability of occurrence of potential damaging events, as well as the distribution of the elements at risk in space and time, considering also changing vulnerabilities, must be determined.

Within this study, a new raster-based approach is developed. Thus, all existent vector data are transferred into raster data using a resolution of 1m x 1m. The specific attribute data are attributed to the grid cells, resulting in specific raster data layers for each input parameter. The calculation of the landslide risk follows a function of the input parameters hazard, damage potential of the elements at risk, vulnerability, probability of the spatial impact, probability of the temporal impact and probability of the seasonal occurrence. Finally, results are upscaled to a resolution of 20m x 20m and are presented as individual risk to life and object risk to life for each process. Within the quantitative landslide risk analysis the associated uncertainties are estimated qualitatively.

In the study area the highest risks throughout all of the analyses (individual risk to life and object risk to life) are caused by debris flows, followed by rock falls, showing that risk heavily varies depending on the process considered. The resultant maps show areas, in which the individual risk to life exceeds the acceptable risk (defined in the aforementioned regulation), so that for these locations risk reduction measures should be developed and implemented. It can be concluded that the newly developed method works satisfactory and is applicable to further catchments in Iceland, and potentially to further countries with different environmental settings.

Publications Copernicus
Special issue
Download
Citation
Share