Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.883 IF 2.883
  • IF 5-year value: 3.321 IF 5-year
    3.321
  • CiteScore value: 3.07 CiteScore
    3.07
  • SNIP value: 1.336 SNIP 1.336
  • IPP value: 2.80 IPP 2.80
  • SJR value: 1.024 SJR 1.024
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 81 Scimago H
    index 81
  • h5-index value: 43 h5-index 43
Volume 4, issue 2
Nat. Hazards Earth Syst. Sci., 4, 315–322, 2004
https://doi.org/10.5194/nhess-4-315-2004
© Author(s) 2004. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: Multidisciplinary approaches in natural hazards

Nat. Hazards Earth Syst. Sci., 4, 315–322, 2004
https://doi.org/10.5194/nhess-4-315-2004
© Author(s) 2004. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  16 Apr 2004

16 Apr 2004

Probabilistic high-resolution forecast of heavy precipitation over Central Europe

C. Marsigli, A. Montani, F. Nerozzi, and T. Paccagnella C. Marsigli et al.
  • ARPA-SIM, Bologna, Italy

Abstract. The limited-area ensemble prediction system COSMO-LEPS has been running operationally at ECMWF since November 2002. Five runs of the non-hydrostatic limited-area model Lokal Modell (LM) are available every day, nested on five selected members of three consecutive 12-h lagged ECMWF global ensembles. The limited-area ensemble forecasts range up to 120h and LM-based probabilistic products are disseminated to several national weather services. COSMO-LEPS has been constructed in order to have a probabilistic system with high resolution, focussing the attention on extreme events in regions with complex orography. In this paper, the performance of COSMO-LEPS for a heavy precipitation event that affected Central Europe in August 2002 has been examined. At the 4-day forecast range, the probability maps indicate the possibility of the overcoming of high precipitation thresholds (up to 150mm/24h) over the region actually affected by the flood. Furthermore, one out of the five ensemble members predicts 4 days ahead a precipitation structure very similar to the observed one.

Publications Copernicus
Download
Citation