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A. Ramı́rez-Rojas1, A. Muñoz-Diosdado2, C. G. Pav́ıa-Miller 1, 3, and F. Angulo-Brown3
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Abstract. In this work we present a spectral and multifractal
study of the electric self-potential fluctuations registered in
an electroseismic station located at 100 km from the epicen-
ter of an earthquake (EQ) withMw=6.5 in the Pacific coast
of Mexico. Our study suggests that in general the time series
analyzed displays a persistent behavior. Our results show
an anticorrelation between the spectral exponentβ and the
width of the multifractal spectrum1α, when they are cal-
culated during a time interval of five months (four months
before the EQ and one month after the EQ). In addition, we
also calculate the time evolution of the correlation coefficient
finding that it has a very similar behavior that the time evo-
lution of 1α.

1 Introduction

In some recent papers fractal methods have been applied
in order to extract possible earthquake precursory signa-
tures from scaling properties of both ULF geomagnetic data
(Hayakawa et al., 1999; Smirnova et al., 2001; Telesca et
al., 2001; Gotoh et al., 2003), and electric seismic signals
(Raḿırez-Rojas et al., 2004; Varotsos et al., 2002, 2003a;
Kapiris et al., 2003, 2004). It has been found that the power
spectrum of ULF emissions, on average exhibits a power law
behaviorS(f )∼f −β , which is a fingerprint of typical frac-
tal (self-affine) time series. In most of the cases, the spectral
exponentβ displays a tendency to decrease gradually when
approaching the earthquake date. Such a tendency shows a
gradual evolution of the structure of the ULF noise towards a
typical flicker noise structure (1/f noise-like) in the prox-
imity of a large earthquake. This behavior has been sug-
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gested as an earthquake precursory signature (Hayakawa et
al., 1999; Smirnova et al., 2001; Ramı́rez-Rojas et al., 2004).

In the present work we analyze theMw=6.5 earthquake oc-
curred at the coordinates (16.54◦ N, 98.98◦ W) on the South
Pacific Mexican coast on 24 October 1993. The electroseis-
mic dataset was collected at the Acapulco station located
100 km far away from the epicenter. Our work is focused
on showing that the observed behavior of the spectral expo-
nentβ1 (the spectral exponent for low frequency intervals,
see below), describes a remarkable decreasing a month and
a half before the event date approximately, just as it was ob-
served in other events (Hayakawa et al., 1999; Smirnova et
al., 2001; Telesca et al., 2001; Ramı́rez-Rojas et al., 2004
in the EW channel). It is convenient to remark that our ap-
proach is not focused in the search of individual SES features
with a precise duration in the sense of Varotsos et al. (2002,
2003a) and Kapiris et al. (2004), but in the analysis of the
global time series considered. On the other hand, we suggest
an anticorrelation relationship between both the time evolu-
tion of β1 and the width of the multifractal spectra1α of the
electroseismic files corresponding to the time interval stud-
ied. The paper is organized as follows: in Sect. 2, we present
the analyzed data sets and a resume of the methods used for
the corresponding analysis. In Sect. 3 we discuss our results
and finally we present some concluding remarks.

2 Data and analysis tools

The seismic electric registers,V (t), were obtained as the
fluctuations of the electric self-potential monitored directly
from the ground by means of two dipoles oriented in North-
South direction (NS channel) and the other one in East-West
direction (EW channel). The electrodes were buried 2 m into
the ground with a separation between them ofL=50 m. The
signals that we consider for this study were collected from
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In Fig. 1 we show a six days segment of the time series V(t) in the NS channel. 

 
Figure 1. Six days segment of the NS time series. The arrow indicates the EQ date. 

 
Fig. 1. Six days segment of the NS time series. The arrow indicates
the EQ date.

the NS channel and monitored with two sampling rates, (first
at1t=4 s and then1t=2 s) in different time intervals. A low
pass filter was used in order to get signals filtered in the ULF
range, 0<f <0.125 Hz, for more technical details, Yépez et
al. (1995) is recommended. In Fig. 1 we show a six days
segment of the time seriesV (t) in the NS channel.

Power spectral density is a well-established method to in-
vestigate the temporal fluctuations of a time series. The
power spectrum is defined (Turcotte, 1992) as:

S(f ) = lim
T →∞

{
|X(f, T )|2

T

}
. (1)

Here, X(f, T ) is the Fourier Transform of the time series
V (t), T is the total time of monitoring withT =n1t , where
1t is the sampling rate.

For self-affine time series, the power spectrum be-
haves like a power-law relation with frequency given by,
S(f )∼f −β . First, S(f ) is calculated by means of the Fast
Fourier Transform (FFT) algorithm, and the spectral expo-
nentβ is estimated by the slope of the best-fit straight line
to log(S(f )) vs. log(f ) and, according with Malamud and
Turcotte (2001),β characterizes the temporal fluctuations of
the time series, for example a white noise-type hasβ=0, for a
flicker noise or 1/f noise,β=1, and for the Brownian motion
β=2.

The method of Detrended Fluctuation Analysis (DFA)
(Peng et al., 1994) has proven to be useful in revealing the
extent of long-range correlations and has some advantages
over conventional methods because it permits the detection
of intrinsic self-similarity embedded in a seemingly nonsta-
tionary time series (Varotsos et al., 2002). The method is
described briefly: The time series to be analyzed is first inte-
grated. Next, the integrated time series is divided into boxes
of equal length,n. In each box of lengthn, a least squares
line (or polynomial curve of orderk) is fitted to the data (rep-
resenting the trend in that box). Next, we detrend the inte-
grated time series by subtracting the local trend in each box.
The root-mean-square fluctuation of this integrated and de-
trended time series is calculated and denoted asF(n). This
computation is repeated over all time scales (box sizes), from
n = minbox ton = maxbox, to characterize the relationship
betweenF(n), the average fluctuation, andn, the box size.
Typically,F(n) will increase with the box sizen. A linear re-

lationship in a log-log plot indicates the presence of a power
law (fractal) scaling:

F(n) ∝ nγ . (2)

Under such conditions, the fluctuations can be characterized
by the scalingγ -exponent, i.e. the slope of the line relat-
ing log((F (n)) to log(n). The caseγ=1/2 represents the ab-
sence of long-range correlations. Thus, the double logarith-
mic plot revels the presence or not, of long-range correlations
(γ 6=1/2).

The behavior of nonlinear dynamical systems can be often
characterized by fractal or multifractal measures. Monofrac-
tals can be characterized by a single fractal dimension, which
indicates that they are stationary from the viewpoint of their
local scaling properties. Multifractals can be decomposed
into many subsets characterized by different fractal dimen-
sions. Multifractals have been used for example to describe
turbulent flows (Chhabra et al., 1989), to identify patholog-
ical conditions in heartbeat dynamics (Ivanov et al., 1999),
to show an underlying hierarchical structure in proteins (Bal-
afas and Dewey, 1995) or to reproduce many important styl-
ized facts of speculative markets (Yamasaki and Mackin,
2003). Various multifractal formalisms have been devel-
oped to describe the statistical properties of these measures in
terms of their singularity spectrum, which provides a descrip-
tion of the multifractal measure in terms of interwoven sets,
with singularity strengthα (the Lipschitz-Ḧolder exponent),
whose fractal dimension isf (α) (Feder, 1988; Chhabra et al.,
1989). We use the Chhabra and Jensen algorithm for the cal-
culation of the spectrum of multifractal structures because it
has been reported (Chhabra and Jensen, 1989; Chhabra et al.,
1989) that this method provides a highly accurate, practical
and efficient method for direct computation of the singularity
spectrum.

If we cover the support of the measure with boxes of size
L and definePi(L) as the probability in theith box, then we
can define an exponentα by

Pi(L) ≈ Lαi (3)

and if we count the number of boxesN(α) where the proba-
bility Pi(L) has a singularity strength betweenα andα+dα,
thef (α) can be defined as the fractal dimension of the set of
boxes with singularity strengthα by

N(α) ≈ L−f (α). (4)

First, a 1-parameter manifold of normalized measuresµi(q)

is constructed, where the probabilities in the boxes of sizeL

are

µi(q, L) =
[Pi(L)]q∑

j

[Pj (L)]q
. (5)

Finally, for each value ofq we evaluate the numerators on
the right-hand sides of the equations:

f (q) = lim
L→0

∑
i

µi(q, L) ln[µi(q, L)]

ln L
(6)
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distinguish between true seismic signals and artificial noises.  In fact our study is over 

the global time series embedding possible signals with seismic origins and others of 

several causes. Interestingly, nevertheless the great noisy contamination of our time 

series, some long-range correlations arise. 

 

 
Figure 2. Here we show four cases representing the typical power spectrum behavior of our time 
series. They exhibit a crossover between two different ββββ´s. 

Fig. 2. Here we show four cases representing the typical power spectrum behavior of our time series. They exhibit a crossover between two
differentβ ’s.

α(q) = lim
L→0

∑
i

µi(q, L) ln[Pi(L)]

ln L
(7)

for decreasing box sizes (increasingn), and we extractf (q)

andα(q) from the slopes of the numerators versus lnL (f (q)

and α(q) are obtained applying the least squares method).
The parameterq provides a microscope for exploring differ-
ent regions of the singular measure. Forq>1,µ(q) amplifies
the more singular regions ofP , while for q<1 it accentuates
the less singular regions, and forq=1 the measureµ (Eq. 5)
replicates the original measure.

These equations provide a relationship between the fractal
dimensionf and the average singularity strengthα as im-
plicit functions of the parameterq.

3 Results and discussion

In order to analyze the whole time series monitored from
July up to November 1993, a sequence of 6 h-files segments
was chosen. The power spectrumS(f ) was performed for
each segment by using a FFT algorithm, then the correspond-
ing β exponent was estimated as the best fit slope in a log-
log scale of the power law relationS(f )∼f −β (which is a
characteristic feature of fractal time series). We found that
S(f ) shows two exponents, one of themβ1, for low frequen-
cies (0<f <0.01 Hz), and aβ2 exponent for high frequencies

 

 

 
 
 

 
Figure 3. Time evolution of β1. It is remarkable that in general 0 < β1 ≤ 1 that is in the FGN range, with a 
persistence behavior. Only a few β1-values are over the β1 = 1 line. 
 

The Detrended Fluctuations Analysis (DFA) has been performed over several segments 

in order to reveal or not the presence of long-range correlations, that is: γ = 0.5 indicates 

completely uncorrelated or white noise; γ = 1.0 indicates 1/f noise; γ =1.5 indicates 

Brown noise and 0.5 < γ < 1.0 indicates long-range correlations (Peng et al (1994)). In 

Fig. 4 five situations are showed. All of the cases exhibit a crossover indicating two 

overlapping processes. For high frequencies (0 < log(n) < 2.5) as we said before the 

process is approximately a white noise with γ ∼ 0.5. For low frequencies (log(n) > 2.5), γ 

is in the interval 0.6 < γ < 1.2 (with only a few cases where γ > 1), that is, a process 

corresponding to long-range correlations. A crossover in the DFA exponent has been 

also reported by Varotsos et al (2002) for SES activity. Although, we are not identifying 

particular SES activity our DFA exponents also present a crossover behavior with the 

properties aforementioned. In our case for high frequencies we observe a white noise 

type behavior while Varotsos et al. (2002) reported a γ ≈ 0.88. However for low 

frequencies our γ-values are of the same order as those of Varotsos et al. (2002) γ-values. 

Apparently in our noisy signals the environmental white noise remains present in the 

high frequencies intervals, nevertheless in the low-frequencies interval, long-range 

correlations arise. It is remarkable that in the Varotsos et al. (2002) SES activity, all the 

interval is dominated by long-range correlations. 

Fig. 3. Time evolution ofβ1. It is remarkable that in general
0<β1≤1 that is in the FGN range, with a persistence behavior. Only
a fewβ1-values are over theβ1=1 line.

(0.01<f <0.125 Hz). We always observed that practically
β2≈0 with a white noise-like behavior (see Fig. 2).

The dynamical evolution ofβ1 was analyzed from July
until November 1993, in this period aMw=6.5 earthquake
occurred on 24 October. In general, we observed that
the emission spectrum displays a power law-like behavior
S(f )∼f −β1 for low frequencies. Figure 3 shows the dynam-
ics followed byβ1. Three time intervals with different kind
of behavior can be distinguished, these intervals were heuris-
tically chosen and are different to the epochs used by Kapiris
et al. (2004). The first interval starts at the beginning of July
and finishes at almost the end of August, whereβ1 describes
an increasing quasi linear trend in the range of 0.55<β1<1.1
approximately.
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Figure 4. DFA performed on some 6-hr files of each month. It can be observed that the complete 
time series exhibits two mixed processes. For the high frequency range the process is dominated by a 
white noise. For the low frequency range, the dynamics represents mainly a long-range correlated 
mechanism. 
 
 
The f versus α curves are the multifractal spectra, they have the appearance we 

show in Fig. 5. The spectra were calculated from q = -30 to q = 30, after the 

algorithm was applied to the time series we smoothed the curves using cubic 

splines and extrapolated to obtain αmax and αmin. The spectrum width or degree of 

multifractality is defined as ∆α = αmax - αmin. 

When we plot ∆α versus time, we obtain the graphic of Fig. 6. In this figure we 

observe certain kind of anti-correlation between the width of the multifractal 

spectrum and the β1 exponent (Fig. 3). During months of July and August ∆α was 

very small practically every day, almost indicating a monofractal behavior, but the 

Fig. 4. DFA performed on some 6 h files of each month. It can be observed that the complete time series exhibits two mixed processes.
For the high frequency range the process is dominated by a white noise. For the low frequency range, the dynamics represents mainly a
long-range correlated mechanism.

The second interval corresponds to a period where sud-
denly β1 falls by taking values in the range, 0<β1<0.55.
This behavior is observed from the end of August until the
first week of October. The third interval occurs from Oc-
tober to November. The slopeβ1 describes large fluctua-
tions during a pair of weeks before the quake, and some
days around the EQ,β1 achieves values of the order of 0.8
in average. At the end of October and at the beginning
of November,β1 shows a decreasing behavior. The arrow
marks the date of theMw=6.5 quake. In our analysis we
found thatβ1 runs in the interval (0.55, 1.2) from July to
August (Fig. 3), this region approximately corresponds to a
fractional Gaussian noise (FGN) (Heneghan and McDarby,
2000). The trend maintained byβ1 suddenly decreases until

the range 0<β1<0.55. Finally, two weeks before the quake,
β1 grows obtaining their largest value (∼1.7). Ourβ1-values
are in general (with a few exceptions) within a persistence in-
terval with Hurst exponentsH in the interval 0.5<H<1 ac-
cording with the expressionH=(β+1)/2 for FGN (Heneghan
and McDarby, 2000). It is important to remark that our time
series surely are contaminated by artificial man-made noises
(and other natural noises) and our analysis does not distin-
guish between true seismic signals and artificial noises. In
fact our study is over the global time series embedding possi-
ble signals with seismic origins and others of several causes.
Interestingly, nevertheless the great noisy contamination of
our time series, some long-range correlations arise.
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that is an empirical relation between ∆α and β1, and apparently it only is valid for 

0<β1 ≤ 1, that is within the FGN range. 

 

 

 

 
Figure 5. Multifractal spectrum plot for the sequence of the September 14, six-hour segment. Fig. 5. Multifractal spectrum plot for the sequence of the 14

September six-hour segment.

The Detrended Fluctuations Analysis (DFA) has been per-
formed over several segments in order to reveal or not the
presence of long-range correlations, that is:γ =0.5 indicates
completely uncorrelated or white noise;γ =1.0 indicates
1/f noise; γ =1.5 indicates Brown noise and 0.5<γ<1.0
indicates long-range correlations (Peng et al., 1994). In
Fig. 4 five situations are showed. All of the cases exhibit
a crossover indicating two overlapping processes. For high
frequencies (0< log(n)<2.5) as we said before the process is
approximately a white noise withγ∼0.5. For low frequen-
cies (log(n)>2.5),γ is in the interval 0.6<γ<1.2 (with only
a few cases whereγ>1), that is, a process corresponding to
long-range correlations. A crossover in the DFA exponent
has been also reported by Varotsos et al. (2002) for SES ac-
tivity. Although, we are not identifying particular SES activ-
ity our DFA exponents also present a crossover behavior with
the properties aforementioned. In our case for high frequen-
cies we observe a white noise type behavior while Varotsos
et al. (2002) reported aγ≈0.88. However for low frequen-
cies ourγ -values are of the same order as those of Varotsos
et al. (2002)γ -values. Apparently in our noisy signals the
environmental white noise remains present in the high fre-
quencies intervals, nevertheless in the low-frequencies inter-
val, long-range correlations arise. It is remarkable that in the
Varotsos et al. (2002) SES activity, all the interval is domi-
nated by long-range correlations.

The f versusα curves are the multifractal spectra, they
have the appearance we show in Fig. 5. The spectra were
calculated fromq=−30 to q=30, after the algorithm was
applied to the time series we smoothed the curves using cu-
bic splines and extrapolated to obtainαmax andαmin. The
spectrum width or degree of multifractality is defined as
1α=αmax−αmin.

When we plot1α versus time, we obtain the graphic
of Fig. 6. In this figure we observe certain kind of anti-
correlation between the width of the multifractal spectrum

 

 

 
Figure 6. The width of the multifractal spectra versus time. Time series monitored from July to 
November, 1993. 
 
We used it to calculate the curve ∆α versus time and we obtained the pattern 
shown in Fig. 7. We show the calculated relation between  ∆α and β1 with circles 
and the approximated relation with asterisks. We can see that they are practically 
the same, thus we can use ∆α = (1-β1)/3 instead of the calculated relation (Eq. 8). 
The fact we want to remark is that this curve qualitatively reproduces the situation 
we have shown in Fig. 6, and if we write it in the form β1 =1-3∆α  we can plot β1 
versus time and we can qualitatively reproduce the β1 exponent dynamics we have 
shown in Fig. 3. The relation between the exponent β1 and the width of the 
multifractal spectrum was obtained only in an empirical way, nevertheless, it could 
be interesting to establish by other ways if it can be a valid relation between these 
quantities.  
 
Recently, a very interesting approach to characterize fractal time series was 
proposed by Kapiris et al. (2004). Their proposal is based in the analysis of the 
time evolution behavior of the correlation coefficient r for VHF and UHF 
electroseismic signals. In this work we also study the r behavior of our ULF 
signals. The time evolution of the anticorrelation between logS(f) and logf is 
depicted in Fig. 8. It is very interesting to remark the extraordinary similarity 
between Fig. 7 (∆α vs time) and Fig. 8 (r vs time). A possible interpretation of this 
similarity could be related with the fact that ∆α measures the complexity of the 
signal in the sense that we need more fractal dimensions to describe the 
multifractal structure if we have a high signal’s variability, which corresponds with 
a low correlation coefficient and viceversa. 

Fig. 6. The width of the multifractal spectra versus time. Time
series monitored from July to November 1993.

and theβ1 exponent (Fig. 3). During months of July and
August1α was very small practically every day, almost in-
dicating a monofractal behavior, but the values of this width
in September were abnormally high, indicating almost a tran-
sition toward a multifractal behavior one month previous the
EQ.

We calculated the anti-correlation between1α andβ1 for
the interval July–November and we obtained the following
relation:

1α = 0.3396− 0.3260β1 (8)

with a correlation coefficientR=−0.699, it looks approxi-
mately as

1α =
1

3
(1 − β1) (9)

that is an empirical relation between1α andβ1, and appar-
ently it only is valid for 0<β1≤1, that is within the FGN
range.

We used it to calculate the curve1α versus time and we
obtained the pattern shown in Fig. 7. We show the calculated
relation between1α and β1 with circles and the approxi-
mated relation with asterisks. We can see that they are prac-
tically the same, thus we can use1α=(1−β1)/3 instead of
the calculated relation (Eq. 8). The fact we want to remark is
that this curve qualitatively reproduces the situation we have
shown in Fig. 6, and if we write it in the formβ1=1−31α

we can plotβ1 versus time and we can qualitatively repro-
duce theβ1 exponent dynamics we have shown in Fig. 3. The
relation between the exponentβ1 and the width of the multi-
fractal spectrum was obtained only in an empirical way, nev-
ertheless, it could be interesting to establish by other ways if
it can be a valid relation between these quantities.

Recently, a very interesting approach to characterize frac-
tal time series was proposed by Kapiris et al. (2004). Their
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Figure 7. ∆α versus time. Calculated (circles) and approximated (asterisks). Both of them reproduce 
in good agreement the pattern showed in Fig 6. Evidently the points where ∆α < 0 have not 
physical meaning. However, only around of five points are in this case. 
 
 

 
Figure 8. Time evolution of the correlation coefficient r. Note the great similarity with Fig. 7, the r-values 
were calculated according to Mandel (1984). 
 

Fig. 7. 1α versus time. Calculated (circles) and approximated (as-
terisks). Both of them reproduce in good agreement the pattern
showed in Fig. 6. Evidently the points where1α<0 have not phys-
ical meaning. However, only around of five points are in this case.

proposal is based in the analysis of the time evolution behav-
ior of the correlation coefficientr for VHF and UHF electro-
seismic signals. In this work we also study ther behavior
of our ULF signals. The time evolution of the anticorre-
lation between logS(f ) and logf is depicted in Fig. 8. It
is very interesting to remark the extraordinary similarity be-
tween Fig. 7 (1α vs. time) and Fig. 8 (r vs. time). A possible
interpretation of this similarity could be related with the fact
that 1α measures the complexity of the signal in the sense
that we need more fractal dimensions to describe the multi-
fractal structure if we have a high signal’s variability, which
corresponds with a low correlation coefficient and viceversa.

4 Concluding remarks

Within the general context of the searching for electromag-
netic seismic precursors, in recent years many efforts have
been made for analyzing electromagnetic data by means
of methods arisen from nonlinear dynamics and statistical
physics. In the present work we have used three meth-
ods (spectral analysis, DFA, and multifractal analysis) to
study electroseismic time series measured in an electroseis-
mic station located at the South Mexican Pacific coast near
the trench between the North-American and Cocos tectonic
plates. This is a very active seismic zone. The studied
time series was collected during four months before and one
month after anMw=6.5 EQ occurred on 24 October 1993,
with an epicenter 100 km distant from the station.

We first calculate the spectral exponent, and find that most
of our studied files have a crossover behavior in this expo-
nent. For low frequencies, we identify a behavior of FGN-
type withβ1 within the interval (0.55, 1) in most of the cases,
and a few cases withβ1 in the interval (1, 1.7) (see Fig. 3).
For high frequenciesβ2≈0, that is, with white noise-type be-

 

 

 
Figure 7. ∆α versus time. Calculated (circles) and approximated (asterisks). Both of them reproduce 
in good agreement the pattern showed in Fig 6. Evidently the points where ∆α < 0 have not 
physical meaning. However, only around of five points are in this case. 
 
 

 
Figure 8. Time evolution of the correlation coefficient r. Note the great similarity with Fig. 7, the r-values 
were calculated according to Mandel (1984). 
 

Fig. 8. Time evolution of the correlation coefficientr. Note the
great similarity with Fig. 7, ther-values were calculated according
to Mandel (1984).

havior. By means of the DFA method, we find (with very few
exceptions) thatβ1 values correspond to a time series with a
persistent behavior. This fact can be the signature of an im-
peding instability of the considered system. Our approach for
studying the electric time series is somewhat different to that
employed by other authors (Varotsos et al., 2002, 2003a, b;
Kapiris et al., 2004). We do not look for individual SES in the
sense of Varotsos et al. (2002), but we make a global analy-
sis of our whole time series. Thus the property of persistence
exhibited by our data corresponds to the global series.

The third method was a multifractal analysis for calculat-
ing the width of the multifractal spectra1α(t) along the five
months interval. The time evolution of1α showed an anti-
correlated pattern withβ1(t). This fact permitted to propose
a simple relationship betweenβ1 and1α given by Eq. (9).
However, this expression needs further empirical and formal
proofs. As a complementary analysis we also calculate the
time evolution of the correlation coefficientr finding that it
behaves in a very similar way that1α(t).

In summary, the present paper adds some empirical
results about the possible links between the behavior of
electroseismic time series and impending earthquakes.

Edited by: P. F. Biagi
Reviewed by: K. Eftaxias and another referee
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