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Abstract. Softening is often considered to be the main cause
of first-time slides in OC clay, but so far the mechanics of
softening has not been satisfactorily explained. Bearing on
laboratory data and field observations about landslides in tec-
tonized highly plastic clay shales of Italian Apennines, the
paper describes a process of soil weakening that could ex-
plain some failures of natural slopes.

1 Introduction

Geotechnical literature reports numerous well documented
cases of first-time slides in OC clay, whose operative shear
strength is lower than the peak measured on representative
undisturbed samples. The contrast between the virtually
available soil resistance, and the resistance that is really mo-
bilised at failure, is usually justified by mechanical processes
of soil weakening occurring prior to slope failure. Two fun-
damental processes are generally invoked: i) strain softening
(Bjerrum, 1967), that is caused by non uniform plastic shear
strains leading beyond the peak, the average soil strength
mobilised along a developing slip surface (progressive fail-
ure); ii) softening (Terzaghi, 1936), that is generally associ-
ated with volumetric strains induced by swelling, that cause
a time-depending decrease in the available peak strength.

Softening, i.e. the decrease in peak strength prior to fail-
ure, is the topic of this paper, that reports some observations
on first-time slides in highly fissured plastic clay shales and
data gathered in both laboratory and in situ tests.

2 Current ideas about softening

Softening is often invoked to justify slides in overconsoli-
dated clay, but a general consensus about the mechanics of
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this phenomenon has not been achieved. Literally, softening
is the result of water content increase due to a change of the
state of stress.

Terzaghi (1936), first, observed that fissured OC clays can
experience some shear strength decay as a consequence of
swelling induced by unloading. Some English authors at-
tributed to softening the delayed failure of cuttings in Lon-
don Clay. In one of his latest paper on this subject, Skempton
(1977) remarked that delayed failure is caused by dissipation
of negative excess pore pressures triggered by excavation, a
process that does not affect the shear strength parameters, but
only the effective state of stress. However, he did not exclude
that during the long-lasting phase of pore pressure equaliza-
tion, some decay of the shear strength parameters can take
place. In another important paper touching the same issue,
Morgenstern (1985) outlined that swelling can provoke a de-
crease in the dilative and brittle behaviour of clay, causing a
decrease in the shear strength through a loss of its component
associated with overconsolidation: therefore, the long-term
strength, the so called fully-softened strength, could be very
close to the critical value.

According to Terzaghi (1936), the mechanism of shear
strength decrease in fissured stiff clays is due to opening of
fissures, swelling of the adjacent clay under practically zero
confining stress and reconsolidation of clay under its own
weight. However, this mechanism does not apply to all cases,
especially to slightly fissured clay. Similar considerations as
those made by Terzaghi, were reported by Skempton (1970)
tens of years after, but thinking to fissures induced, also in
intact clay, by mechanisms of shear.

Just to test, under the umbrella of the Critical Strength
Theory, the effects of swelling on shear strength, Calabresi
and Scarpelli (1985) and Rampello (1987) performed CIU
triaxial tests on some Italian non-fissured or slightly fis-
sured OC clays, pre-swelled in the laboratory under a very
low confining stress. They noticed that swelling can bring
about some decrease in cohesion due to increase in the water
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function of the profile of the slip surface (Fig. 3), i.e. of continuity, spacing, orientation and 

shape of fissures. 

 
Figure 1. Approximate representation of the geological history of the Apennines chain and 

associated fabric of clay shales (from Picarelli et al., 1998) 
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suggest that fissures can be hidden, nevertheless affecting the shear strength.  

Urciuoli (1990) reviewed the Italian literature on landslides in highly fissured tectonized clay 

shales, showing that flow-like movements are most widespread than other types of landslide.  

TECTONIZED CLAY SHALE: 
CONTINENTAL ENVIRONM ENT

SOFTENED  CLAY SHALE: 
CONTINENTAL ENVIRONM ENT

NON-FISSURED BONDED  CLAY: 
M ARINE  ENVIRONM ENT

NON-FISSURED  NON-BONDED  N.C.  CLAY:
M ARINE  ENVIRONMENT

SEDIMENTATION

DIAGENESIS AND AGEING

G
EO

LO
G

IC
AL

 P
RO

CE
SS

ES

FA
B R

IC
 A

ND
 S

TR
UC

T U
RE

 E
VO

LU
TI

O
N

TECTONISM

SOFTENING AND W EATHERING

5 - 10 cm

SWL

SWL

SW L

SWL

Figure 2. The highly fissured 

tectonized Bisaccia clay shale  

Fig. 1. Approximate representation of the geological history of the Apennines chain and associated fabric of clay shales (from Picarelli et
al., 1998).

content. However, cohesion does not completely vanish and
the soil behaviour remains dilative due to overconsolidation.

It is worth mentioning that softening, as described above,
has some similarities with other phenomena that are respon-
sible for time-depending decay of shear strength, such as
weathering, slaking, i.e. soil destructuration caused by cy-
cles of wetting-drying or of freezing-thawing (Botts, 1998;
Graham and Au, 1985) and fatigue (Lacerda, 1989; Eigeng-
brod et al., 1992). Through accumulated plastic strains, all
these phenomena, generally concentrated in the most super-
ficial soil layers, can determine a loss of that part of the
shear strength that depends on interparticle bonding, causing
a reduction in cohesion. Therefore, they affect only bonded
clays. Leroueil and Vaughan (1990) and Hight et al. (2002)
assume that even simple swelling can provoke destructura-
tion of bonded clays. This idea has been recently resumed
by Takahashi et al. (2005) bearing on the results of labora-
tory tests on undisturbed specimens of London clay.

All mechanisms mentioned above show how complicated
is the interpretation of slope instability in stiff overconsoli-
dated clay and clay shale, since more than one of them can
contemporaneously act in the same slope at same time. Fur-
thermore, strain-softening (progressive failure) and rate ef-
fects can play an additional and significant role. However,
laboratory data and field observations on highly fissured plas-
tic clay shales of Italian Apennines show that a decrease in
the shear strength could be caused by chemical-physical pro-
cesses provoked by exposure of soil to fresh water.

3 Fabric and instability mechanisms in tectonized clay
shales in the Apennines chain, Italy

Tectonized clay shales are widespread in the Apennines
chain, Italy. The chain is the result of orogenesis, and is con-
stituted by a thrust sheet sequence of superimposed nappes
of clay and competent rock. Figure 1 shows a schematic rep-
resentation of possible effects of the geological history of the
chain on the structure of fine-grained deposits of marine ori-
gin.

Figure 2 shows a specimen of tectonized clay shale. It
is highly fissured and sheared as a result of tectonism. Fis-
sures are planar to curved, and polished to slickensided, thus
their shear strength is certainly close to the residual value.
Fissures are very small and closely spaced, intersecting each
other: as a result, they subdivide the material into very small
fragments (shear lenses, usually called “scales”) whose size
is in the order of some millimetres to a few centimetres.
However, superimposed persistent shear discontinuities are
generally widespread in the soil mass.

As a result of this complex fabric, the mechanism of fail-
ure of tectonized clay shales is characterized by localization
of deformation and slipping of soil along a system of nearby
and mutually intersecting discontinuities (fissures and/or per-
sistent shears), as in Fig. 3. Therefore, the available peak
strength is quite low, because it depends on the friction angle
along fissures, that is closely around residual, and on a sort of
“angle of roughness”, that is a function of the profile of the
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slip surface (Fig. 3), i.e. of continuity, spacing, orientation
and shape of fissures.

For increasing confining stresses, the influence of this an-
gle of roughness is smaller and smaller, and the resistance of
clay can drop below the critical strength measured on recon-
stituted soil, tending towards the residual value (Picarelli et
al., 2002).

Outcrops in tectonized clay shales are generally covered
by a softer and destructured clay generated by weathering
and swelling. A strong and fast increase in water content can
be also caused by cutting. As a result of these phenomena,
the system of fissures tends to disappear, and the clay shale
progressively turns into an apparently non-fissured material.
However results of laboratory tests on samples taken from
softened covers suggest that fissures can be hidden, never-
theless affecting the shear strength.

Urciuoli (1990) reviewed the Italian literature on land-
slides in highly fissured tectonized clay shales, showing that
flow-like movements are most widespread than other types
of landslide.

This remark suggests that softening plays an important
role on slope behaviour, since it normally favours the devel-
opment of landslides of flow style. As a matter of fact, geo-
morphological field inve-stigations indicate that slope failure
can be followed by a fast increase of water content that goes
on with a change of the movement style from slide to flow
(Pellegrino et al., 2004).

4 Land evolution and slope instability in the Bisaccia
area, Southern Apennines

The Bisaccia hill is sited about 100 km North to Naples
(Fig. 4). It is elongated in the South-North direction and
is constituted by a slab of slightly cemented conglomerates
resting on tectonized highly plastic clay shales of marine
origin (CF=60%÷70%; WL=110%÷190%) that extensively
outcrop in a wide area around the hill.The hill is the result of
erosion started some hundreds thousands of years ago along
two parallel faults. Erosion dismantled the upper conglomer-
ates, leaving the hill in the middle (Fig. 5). Today, the bed of
the two valleys is located within the fine-grained formation.
The uppermost part of hillslopes, in conglomerates, is quite
steep, whereas the lowermost part, in clay shales, is much
gentler. Further hills rising in the same area display similar
features.

As a consequence of continuous stress change associated
with still active erosion, clay shales experience continuing
deformation. In particular, the bed of the two valleys is rising
because of swelling, while the hill is sinking and spreading
laterally due to squeezing out of underlying clay shales. As
a result, the conglomerate slab is highly fractured. This de-
formational process is accelerated by earthquakes, that have
a return period ranging between thirty and fifty years. In
particular, the strongest ones are responsible for post-seismic
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Fig. 2. The highly fissured tectonized Bisaccia clay shale.

subsidence caused by dissipation of excess pore pressures in-
duced by shaking (Di Nocera et al., 1995).

Geomorphological surveys and monitoring support the
proposed model of land evolution. Deficient pore pressures,
measured with vibrating wire piezometer installed in depth
in the middle of the eastern valley, can be explained only by
the effects of erosion, whose rate is faster than the rate of
excess pore pressure dissipation. In contrast, monitoring of
pore pressures in clay shales overlain by the hill, carried out
after the strong Irpinia earthquake (1980), allowed to record
positive excess pore pressures induced by seismic shaking.
Numerical analyses bearing on extensive and careful labora-
tory investigations support these considerations (Di Nocera
et al., 1995; Lampitiello et al., 2001).

The high erodibility of Bisaccia clay shales is directly rec-
ognizable in site by geomorphological investigations. In fact,
running waters can rapidly excavate narrow and steep gullies:
in a few years, these can attain depths of metres.

Steep slopes in clay shale are subjected to either deep
slides or shallow mudslides. A couple of examples are shown
in Fig. 6. The first photograph (Fig. 6a) shows quite a deep
slide along a flank of the Bisaccia hill: the slide develops
in grey clay shales, involving a brown conglomerate block.
The second photograph (Fig. 6b) shows a shallow mudslide
in grey clay shales.
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Fig. 3. Typical mechanism of failure of tectonized clay shales in triaxial tests and factors governing the friction angle,ϕ′ (from Olivares and
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Accounting for the very low shear strength of soil in satu-
rated conditions (ϕ′=15÷25◦, depending on effective normal
stress), steep slopes in clay shale, that can locally reach an-
gles of 40◦ and more, can remain stable for long time only
thanks to suction (Olivares, 1997). Swelling pressures mea-
sured in the laboratory on superficial samples directly taken
from outcrops, prove the existence of a high suction. In fact,
values as high as 0.6 to 1 MPa have been measured in oe-
dometer and isotropic compression tests that have been per-
formed, as usual, in a bath of distilled water. Such high
suctions are due to the effects of erosion (Picarelli and Ur-
ciuoli, 1993), combined with the steepness of slopes and
the low conductivity of clay, that govern hydraulic boundary
conditions and capillary forces. In particular, in saturated
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Numerical analyses bearing on extensive and careful laboratory investigations support these 
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The high erodibility of Bisaccia clay shales is directly recognizable in site by 

geomorphological investigations. In fact, running waters can rapidly excavate narrow and 

steep gullies: in a few years, these can attain depths of metres. 

Figure 5. Geological history of the Bisaccia hill 

according to Di Nocera et al. (1995)

Fig. 5. Geological history of the Bisaccia hill according to Di No-
cera et al. (1995).
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Fig. 6. Landslides in clay shale along steep slopes:(a) a deep slide
affecting the hillslope;(b) a mudslide.

conditions the soil permeability is as low as a 10÷13 m/s.
Prolonged rainfalls cause a decrease in suction and in the
associated cohesion, leading to slope instability. The depth
reached by the advancing wet front due to water infiltration
depends on the duration of the event, on the slope of the
ground surface and on soil permeability. Generally, land-
slides have a very small thickness. As shown by Pellegrino
et al. (2004), formation of mudslides, as in Fig. 6b, can be
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Also deep slides occurring along the steep flanks of the hill, as in Figure 6a, are triggered by 

suction decrease. Possibly, the mechanism of failure is progressive, starting from the toe of 

the slope, where suction 
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Therefore, if the morphology of 

slope does not change with time, 

the minimum safety factor, attained in wet seasons, should remain more or less the same. In 

this case, instability seems to be a consequence of a time-depending process of shear strength 

decrease, here called softening, more than of pore pressure changes. 

Figure 7. Landslides occurring on gentle slopes  Fig. 7. Landslides occurring on gentle slopes.

due to the rapidity of debris deposition at the toe of the slope,
that cause a building up of excess pore pressure in the fine-
grained debris, under its own weigh.

Also deep slides occurring along the steep flanks of the
hill, as in Fig. 6a, are triggered by suction decrease. Possibly,
the mechanism of failure is progressive, starting from the toe
of the slope, where suction decreases faster than in depth.

Figure 7 shows some shallow landslides (either slides or
flows) on a gentle slope. In these geomorphological con-
ditions the water table is very close to the ground surface
for a great part of the year; hence, suction does not seem
to play an important role. Therefore, if the morphology of
slope does not change with time, the minimum safety fac-
tor, attained in wet seasons, should remain more or less the
same. In this case, instability seems to be a consequence
of a time-depending process of shear strength decrease, here
called softening, more than of pore pressure changes.

5 Likely effects of infiltration on the shear strength of
Bisaccia clay shale

As shown above, the mechanism of failure and the shear
strength of tectonized clay shales are strongly affected by
fabric. In its “overconsolidation” range, the soil is dilative
and slightly brittle. This is shown in Fig. 8a where are re-
ported the results of conventional direct shear tests on the
marine Bisaccia clay shale, run, as usual, in a bath of distilled
water, under a normal stress less than the overconsolidation
pressure. Figure 8b shows the results of further tests per-
formed after a stage of swelling in the same shear box under
a normal stress of 10 kPa, and a successive stage of consol-
idation under the established normal stress, that falls in the
same range of values as in the previous case. A compari-
son between the two figures shows that pre-swelling deter-
mines a radical change of soil behaviour, that becomes con-
tractive and ductile, leading to a significant shear strength
decrease: since in both cases the failure envelope is slightly

www.nat-hazards-earth-syst-sci.net/6/529/2006/ Nat. Hazards Earth Syst. Sci., 6, 529–539, 2006
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5. Likely effects of infiltration on the shear strength of Bisaccia clay shale 
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Figure 8. Results of direct shear tests on the Bisaccia clay shale (from Cicolella & Picarelli, 

1990): a) conventional; b) after a stage of swelling under a normal stress of 10 kPa 

Fig. 8. Results of direct shear tests on the Bisaccia clay shale (from Cicolella and Picarelli, 1990):(a) conventional;(b) after a stage of
swelling under a normal stress of 10 kPa.

  
Figure 9 shows the results of further tests conducted under normal stresses lower than the 

swelling pressure (around 0.6 MPa). While a part of the specimens were allowed to swell, as 

usual, for 48 hours, others were sheared only after 10 to 100 days of swelling, during which 

they experienced high volumetric strains. The difference in shear strength is very clear. Once 

again, the parameters of shear strength are dramatically affected by the magnitude of 

swelling: in fact, the cohesion measured after a long stage of swelling falls from 11 to 9 kPa 

and the friction angle from 26° to 18°.     

 

 
 
Figure 9. Results of direct shear tests on the Bisaccia clay shale for normal stresses lower than 

the swelling pressure (from Picarelli, 1991)  
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non-linear, the linear fitting of data furnishes some cohesion,
that is 11 kPa in the first case and 16 kPa in the second one,
but the friction angle after pre-swelling drops from 26◦ to
only 11◦ (Cicolella and Picarelli, 1990). Such a low value of
the friction angle deserves some further comment.

Figure 9 shows the results of further tests conducted un-
der normal stresses lower than the swelling pressure (around
0.6 MPa). While a part of the specimens were allowed to

swell, as usual, for 48 h, others were sheared only after 10
to 100 days of swelling, during which they experienced high
volumetric strains. The difference in shear strength is very
clear. Once again, the parameters of shear strength are dra-
matically affected by the magnitude of swelling: in fact, the
cohesion measured after a long stage of swelling falls from
11 to 9 kPa and the friction angle from 26◦ to 18◦.

All these results show that swelling in distilled water (ei-
ther primary or secondary) is responsible for a change of soil
behaviour and shear strength. Starting from works carried
out by Di Maio (1996a, b), Picarelli et al. (1998) assume that
the peak strength decrease experienced by marine Bisaccia
clay shale is caused by physical-chemical processes due to
exposure to and absorption of distilled water, and consequent
change of interparticle forces.

An impressive idea about the susceptibility of marine
Bisaccia clay shale to any change of pore liquid is shown in
Fig. 10, that shows the dependence of the liquidity limit on
the molarity of a NaCl solution. Such a solution is probably
more similar than distilled water to the natural pore liquid, in
turn depending on the natural deep marine sedimentation en-
vironment. As shown, the liquidity limit obtained with dis-
tilled water is about two times the one obtained with NaCl
solution, regardless its molarity.
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Figure 11 reports the results of triaxial tests executed by
Di Maio and Onorati (2000) on reconstituted normally con-
solidated specimens obtained by mixing powdered clay with
distilled water and with a 1 M NaCl solution. It shows that
the friction angle at constant volume depends on the nature of
pore liquid. Similar results have been obtained for the resid-
ual friction angle, that is 8.6◦ in a NaCl solution and only 4◦

in distilled water (Di Maio, 1966b).
These data suggest that any variation of the natural envi-

ronment can cause a change of the field soil behaviour. An
example of the possible effects of infiltration of fresh water
in a natural deposit subjected to swelling is shown in Fig. 12,
that reports the results of oedometer tests carried out on two
couples of undisturbed specimens of marine Bisaccia clay
shale taken in the middle of the western valley, respectively
at a depth of 2.5 and 21 m. A specimen of each couple was
tested in a bath of distilled water; the other one was tested in
1 M NaCl solution. The influence of the nature of the bath
on soil behaviour does not appear significant in the stage
of compression, when the pore water is expelled from the
specimen, but becomes prominent in the following stage of
swelling, when some liquid is absorbed from the bath: in
fact, the specimens tested in distilled water (and especially
the one taken at the greatest depth) display higher strains than
those tested in the solution. A the end of the tests performed
in the NaCl solution, when the axial stress was 10 kPa, the
solution was substituted with distilled water, giving immedi-
ately rise to further strong soil swelling.

These observations can justify the results of direct shear
tests presented at the beginning of this section: primary and
secondary swelling in distilled water provokes a chemical ex-
change between the distilled water and the natural pore liq-
uid, an increase of the void ratio and a change of interparti-
cle forces. As a consequence, also intrinsic soil properties,
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as the indexes of compressibility and swelling or the criti-
cal and residual friction angle of reconstituted soil, change.
In addition, also the general soil behaviour, that turns from
dilative into contractive, seems to change (Fig. 8). Both ef-
fects contribute to a decrease in the shear strength.

According to these results, the high swelling index exhib-
ited in oedometer tests by several American highly plastic
clay shales and attributed to passive failure occurring dur-
ing unloading (Singh et al., 1973) or to soil destructuration
(Leroueil and Vaughan, 1990), could be simply an effect of
osmotic swelling, as in Fig. 12a, giving rise to a progressive
change of the composition of pore liquid.

Bearing on these results, it comes naturally to assume that
shallow layers of marine OC clay subjected to swelling in-
duced by erosion, may experience a time-depending shear
strength decrease, usually called softening, due to infiltration
of fresh rain water. This process is facilitated by opening of
fissures, and leads to long-term slope failures.

It is worth mentioning that literature reports some cases in
which similar physical-chemical phenomena seem to play a
prominent role on slope behaviour (see for instance Hawkins,
1996). An interesting case of mudslide movement seemingly
governed by changes of the chemistry of pore liquid has been
described by Moore and Brunsden (1996). The authors find
that the threshold of pore pressure required to reactivate the
mudslide in wet seasons is lower than that required to stop
movement. They associate this apparent inconsistency with
changes of pore water chemistry occurring during dry peri-
ods.

To further investigate the properties of Bisaccia clay shale,
a campaign of in situ tests was carried out in the eastern
valley. The upper part of this is occupied by a slow active
mudslide whose thickness ranges between 3 and 6 m. In this
area 18 CPTU tests and 6 environmental cone tests were per-
formed; these last allowed to measure the pH of pore water.
The tests were carried out through the mudslide body until
the underlying parent stable formation.
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of the tests performed in the NaCl solution, when the axial stress was 10 kPa, the solution was 

substituted with distilled water, giving immediately rise to further strong soil deformation.  

 

 
 
Figure 12. Results of oedometer tests on undisturbed specimens exposed to different liquids 

(from Picarelli et al., 1998) 

 
  
These observations can justify the results of direct shear tests presented at the beginning of 

this section: primary and secondary swelling in distilled water provokes a chemical exchange 

between the distilled water and the natural pore liquid, an increase of the void ratio and a 

change of interparticle forces. As a consequence, also intrinsic soil properties, as the indexes 

of compressibility and swelling or the critical and residual friction angle of reconstituted soil, 

change. In addition, also the general soil behaviour, that turns from dilative into contractive, 

seems to change (Fig. 8). Both effects contribute to a decrease of the shear strength.  

According to these results, the high swelling index exhibited in oedometer tests by several 

American highly plastic clay shales and attributed to passive failure occurring during 

unloading (Singh et al., 1973) or to soil destructuration (Leroueil and Vaughan, 1990), could 

be simply an effect of osmotic swelling, as in Figure 12a, giving rise to a progressive change 

of the composition of pore liquid. 

Bearing on these results, it comes naturally to assume that shallow layers of marine OC clay 

subjected to swelling induced by erosion, may experience a time-depending shear strength 

decrease, usually called softening, due to infiltration of fresh rain water. This process is 

facilitated by opening of fissures, and leads to long-term slope failures.  

0

1

2

3

4

5

1 10 100 1000 10000
σ'a (kPa)

vo
id

 ra
tio

 e

C1 sol. 1 M NaCl

C5bis sol. 1M NaCl

ex
po

su
re

 to
 d

is
til

le
d 

w
at

er

(b)

0,2

0,4

0,6

0,8

1

10 100 1000 10000σ'a (kPa)

vo
id

 ra
tio

 e

C1 distilled water
C1 sol. 1 M NaCl

C5bis sol. 1M NaCl
C5bis distilled water

(a)

Fig. 12. Results of oedometer tests on undisturbed specimens exposed to different liquids (from Picarelli et al., 1998).

Figure 13 shows some results of the tests performed in
the experimental field. In both cases, the tip resistance in
the mudslide body is extremely small and does not show
any clear trend with depth, locally revealing more resistant
zones probably due to the presence of rock fragments or
of lithorelicts of the parent formation embedded in the de-
bris. However, since the cone penetrates into the cover of
the stable parent formation overlain by the mudslide body,
the measured strength starts to increase with depth. Accord-
ing to well known relationships between tip resistance and
undrained cohesion, the minimum value of this last in the
mudslide body can be assessed in the range between 10 and
20 kPa, while in the cover of the stable parent formation it
reaches values of hundreds of kPa. The measurements made
with the environmental cone show that the mudslide body
is quite acid, having a pH less than 7, with minimum val-
ues of 4÷5. However, differently from the tip resistance,
the pH gradually increases with depth even in the mudslide
body. In strong contrast with the features of the uppermost
remoulded soils, the pH measured in the parent formation is
always higher than 7.

The entire set of data gathered in the site investigation
seem to confirm previous considerations about the effects of
swelling on the mechanical behaviour of Bisaccia clay shale.
In fact, infiltration of rain water, that can reach quite a great
depth because of opening of cracks during movement, per-
manently exposes the mudslide body to fresh water. Induced
osmotic phenomena lead to a progressive variation of inter-
particle forces and of mechanical soil properties. The lower
pH of these soils, that is also affected by decomposition of
organic matter, could be an indicator of such a process.

Infiltration of rain water below the mudslide body is less
easy because of the lower soil permeability, of the decreasing
density of opened cracks, and of the decreasing aperture of
these last. This might explain the abrupt change of pH at the
interface with the lower formation.

Such physical processes are likely to develop also in those
fine-grained deposits that cover stable gentle slopes, caus-
ing a slow time-depending shear strength decrease, usually
called softening, and consequent long-term slope failures.
Since these processes are also responsible for large increase
of soil porosity, the development of flow-like landslides
seems more likely than that of slides, because of the softer
soil response that leads to large deformations of the landslide
body and, mostly, to high positive excess pore pressures, if
undrained conditions establish (Pellegrino et al., 2004).

Naturally, described phenomena are more likely in highly
plastic clay shales of marine origin, whose susceptibility to
exposure to fresh water is much higher than in other forma-
tions.

6 Summary and conclusions

Geotechnical literature shows that the operative strength in
first-time slides in OC clay is often less than the peak bulk
strength measured in the laboratory. In the last seventy
years, this fundamental observation intrigued very much re-
searchers. The answer given so far to this question is not
always satisfactory, probably because different mechanisms,
often contemporaneously acting, can determine the same re-
sult. According to one of the most favourite explanations,
swelling due to stress decrease can determine a reduction
of the peak shear strength. Despite experience supports this
observation, the mechanics of this phenomenon is not com-
pletely clear.

The paper shortly describes the features of landslides af-
fecting natural slopes in tectonized highly fissured plastic
clay shales of marine origin outcropping in a small area of
Southern Italy. In particular, it has been observed that:

– slope failures affect either steep slopes or gentle slopes,
displaying slide-like or flow-like movement patterns;
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Fig. 13. Results of CPTU and environmental cone tests performed in the Bisaccia clay shale.
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– they are triggered by time-depending processes of shear
strength decrease;

– two different mechanisms of soil weakening, both
caused by rainfall, seem to prevail: suction decrease and
reduction of the effective shear strength parameters;

– first mechanism, that is responsible for instability of
steep slopes, is due to a decrease in the cohesion as-
sociated with suction;

– second mechanism, that typically triggers instability of
gentle slopes, is due to osmotic phenomena caused by
exposure of clay shale to fresh water, and can govern
the development of flow-like movements;

– similar phenomena of shear strength decrease due to ex-
posure to fresh water seem likely in other formations of
highly plastic overconsolidated clays of marine origin.
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di Napoli Federico II, 1997.

Olivares, L. and Picarelli, L.: Discussion of the paper “A labo-
ratory study of the shear strength of four stiff clays” by Bur-
land, J. B., Rampello, S., Georgiannou, V. N., and Calabresi, G.,
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