Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year
    2.693
  • CiteScore value: 2.43 CiteScore
    2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 73 Scimago H
    index 73
Volume 8, issue 6 | Copyright
Nat. Hazards Earth Syst. Sci., 8, 1299-1307, 2008
https://doi.org/10.5194/nhess-8-1299-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

  01 Dec 2008

01 Dec 2008

Near surface shear wave velocity in Bucharest, Romania

M. von Steht, B. Jaskolla, and J. R. R. Ritter M. von Steht et al.
  • Geophysical Institute, Universität Karlsruhe (TH), Hertzstr. 16, 76187 Karlsruhe, Germany

Abstract. Bucharest, the capital of Romania with nearly 2 1/2 million inhabitants, is endangered by the strong earthquakes in the Vrancea seismic zone. To obtain information on the near surface shear-wave velocity Vs structure and to improve the available microzonations we conducted seismic refraction measurements in two parks of the city. There the shallow Vs structure is determined along five profiles, and the compressional-wave velocity (Vp) structure is obtained along one profile. Although the amount of data collected is limited, they offer a reasonable idea about the seismic velocity distribution in these two locations. This knowledge is useful for a city like Bucharest where seismic velocity information so far is sparse and poorly documented. Using sledge-hammer blows on a steel plate and a 24-channel recording unit, we observe clear shear-wave arrivals in a very noisy environment up to a distance of 300 m from the source. The Vp model along profile 1 can be correlated with the known near surface sedimentary layers. Vp increases from 320 m/s near the surface to 1280 m/s above 55–65 m depth. The Vs models along all five profiles are characterized by low Vs (<350 m/s) in the upper 60 m depth and a maximum Vs of about 1000 m/s below this depth. In the upper 30 m the average Vs30 varies from 210 m/s to 290 m/s. The Vp-Vs relations lead to a high Poisson's ratio of 0.45–0.49 in the upper ~60 m depth, which is an indication for water-saturated clayey sediments. Such ground conditions may severely influence the ground motion during strong Vrancea earthquakes.

Publications Copernicus
Download
Citation
Share