Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year
    2.693
  • CiteScore value: 2.43 CiteScore
    2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 73 Scimago H
    index 73
Volume 9, issue 4 | Copyright

Special issue: Assessment of different dimensions of vulnerability to natural...

Nat. Hazards Earth Syst. Sci., 9, 1479-1494, 2009
https://doi.org/10.5194/nhess-9-1479-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

  25 Aug 2009

25 Aug 2009

Vulnerability assessment and protective effects of coastal vegetation during the 2004 Tsunami in Sri Lanka

M. Kaplan1,2, F. G. Renaud1, and G. Lüchters2 M. Kaplan et al.
  • 1United Nations University, Institute for Environment and Human Security, Bonn, Germany
  • 2University of Bonn, Center for Development Research, Bonn, Germany

Abstract. The tsunami of December 2004 caused extensive human and economic losses along many parts of the Sri Lankan coastline. Thanks to extensive national and international solidarity and support in the aftermath of the event, most people managed to restore their livelihoods completely but some households did not manage to recover completely from the impacts of the event. The differential in recovery highlighted the various vulnerabilities and coping capacities of communities exposed to the tsunami. Understanding the elements causing different vulnerabilities is crucial to reducing the impact of future events, yet capturing them comprehensively at the local level is a complex task. This research was conducted in a tsunami-affected area in southwestern Sri Lanka to evaluate firstly the role of coastal vegetation in buffering communities against the tsunami and secondly to capture the elements of vulnerability of affected communities. The area was chosen because of its complex landscape, including the presence of an inlet connecting the Maduganga estuary with the sea, and because of the presence of remaining patches of coastal vegetation. The vulnerability assessment was based on a comprehensive vulnerability framework and on the Sustainable Livelihoods Framework in order to detect inherent vulnerabilities of different livelihood groups. Our study resulted in the identification of fishery and labour-led households as the most vulnerable groups. Unsurprisingly, analyses showed that damages to houses and assets decreased quickly with increasing distance from the sea. It could also be shown that the Maduganga inlet channelled the energy of the waves, so that severe damages were observed at relatively large distances from the sea. Some reports after the tsunami stated that mangroves and other coastal vegetation protected the people living behind them. Detailed mapping of the coastal vegetation in the study area and subsequent linear regression revealed significant differences between three vegetation classes present in the area with regard to water level and damages to houses. As our region showed homogeneity in some important factors such as coastal topography, our results should only be generalised to comparable regions.

Publications Copernicus
Special issue
Download
Citation
Share